If and , then
| 19.5.1 | |||
|
ⓘ
| |||
where is the Gauss hypergeometric function (§§15.1 and 15.2(i)).
| 19.5.2 | |||
|
ⓘ
| |||
| 19.5.3 | |||
|
ⓘ
| |||
| 19.5.4 | |||
|
ⓘ
| |||
| 19.5.4_1 | |||
|
ⓘ
| |||
| 19.5.4_2 | |||
|
ⓘ
| |||
| 19.5.4_3 | |||
|
ⓘ
| |||
where is an Appell function (§16.13).
For Jacobi’s nome :
| 19.5.5 | |||
| , . | |||
|
ⓘ
| |||
Also,
| 19.5.6 | |||
| , | |||
|
ⓘ
| |||
where
| 19.5.7 | |||
|
ⓘ
| |||
Coefficients of terms up to are given in Lee (1990), along with tables of fractional errors in and , , obtained by using 12 different truncations of (19.5.6) in (19.5.8) and (19.5.9).
| 19.5.8 | |||
| , | |||
|
ⓘ
| |||
| 19.5.9 | |||
| . | |||
|
ⓘ
| |||
An infinite series for is equivalent to the infinite product
| 19.5.10 | |||
|
ⓘ
| |||
where and
| 19.5.11 | |||
| . | |||
|
ⓘ
| |||