Let
| 28.28.1 | |||
|
ⓘ
| |||
Then
| 28.28.2 | |||
|
ⓘ
| |||
| 28.28.3 | |||
|
ⓘ
| |||
| 28.28.4 | |||
|
ⓘ
| |||
| 28.28.5 | |||
|
ⓘ
| |||
In (28.28.7)–(28.28.9) the paths of integration are given by
| 28.28.6 | |||
|
ⓘ
| |||
where and are real constants.
| 28.28.7 | |||
| , | |||
|
ⓘ
| |||
| 28.28.8 | |||
| , | |||
|
ⓘ
| |||
| 28.28.9 | |||
|
ⓘ
| |||
| 28.28.10 | |||
|
ⓘ
| |||
| 28.28.11 | |||
|
ⓘ
| |||
| 28.28.12 | |||
|
ⓘ
| |||
| 28.28.13 | |||
|
ⓘ
| |||
| 28.28.14 | |||
|
ⓘ
| |||
In particular, when the integrals (28.28.11), (28.28.14) converge absolutely and uniformly in the half strip , .
| 28.28.15 | |||
|
ⓘ
| |||
| 28.28.16 | |||
|
ⓘ
| |||
With the notations of §28.4 for and , §28.14 for , and (28.23.1) for , ,
| 28.28.17 | |||
| , | |||
|
ⓘ
| |||
where and are analytic functions for and real with
| 28.28.18 | ||||
|
ⓘ
| ||||
and
| 28.28.19 | ||||
|
ⓘ
| ||||
In particular, for integer and ,
| 28.28.20 | |||
|
ⓘ
| |||
where again and , .
| 28.28.21 | |||
|
ⓘ
| |||
| 28.28.22 | |||
|
ⓘ
| |||
| 28.28.23 | |||
|
ⓘ
| |||
With the parameter suppressed we use the notation
| 28.28.24 | ||||
|
ⓘ
| ||||
and assume and . Then
| 28.28.25 | |||
|
ⓘ
| |||
| 28.28.26 | |||
|
ⓘ
| |||
where
| 28.28.27 | |||
|
ⓘ
| |||
| 28.28.28 | |||
|
ⓘ
| |||
| 28.28.29 | |||
|
ⓘ
| |||
| 28.28.30 | |||
|
ⓘ
| |||
| 28.28.31 | |||
|
ⓘ
| |||
| 28.28.32 | |||
|
ⓘ
| |||
where
| 28.28.33 | |||
|
ⓘ
| |||
Also,
| 28.28.34 | |||
|
ⓘ
| |||
where the integral is a Cauchy principal value (§1.4(v)).
Again with the parameter suppressed, let
| 28.28.35 | ||||
|
ⓘ
| ||||
Then
| 28.28.36 | |||
|
ⓘ
| |||
| 28.28.37 | |||
|
ⓘ
| |||
where , ; . Also,
| 28.28.38 | |||
|
ⓘ
| |||
Let
| 28.28.39 | ||||
|
ⓘ
| ||||
| 28.28.40 | ||||
|
ⓘ
| ||||
Then
| 28.28.41 | |||
|
ⓘ
| |||
| 28.28.42 | |||
|
ⓘ
| |||
where , ; , . Also,
| 28.28.43 | |||
|
ⓘ
| |||
Next,
| 28.28.44 | |||
|
ⓘ
| |||
| 28.28.45 | |||
|
ⓘ
| |||
where , ; , . Also,
| 28.28.46 | |||
|
ⓘ
| |||
Lastly,
| 28.28.47 | |||
|
ⓘ
| |||
| 28.28.48 | |||
|
ⓘ
| |||
where , ; . Also,
| 28.28.49 | |||
|
ⓘ
| |||