Let and be nonnegative integers; ; ; , , . The generalized hypergeometric function with matrix argument , numerator parameters , and denominator parameters is
| 35.8.1 | |||
If for some satisfying , , then the series expansion (35.8.1) terminates.
If , then (35.8.1) converges for all .
If , then (35.8.1) converges absolutely for and diverges for .
If , then (35.8.1) diverges unless it terminates.
| 35.8.2 | |||
| . | |||
| 35.8.3 | |||
| . | |||
| 35.8.4 | |||
| . | |||
Let . Then
| 35.8.5 | |||
| . | |||
Let ; one of the be a negative integer; , , , . Then
| 35.8.6 | |||
Again, let . Then
| 35.8.7 | |||
| , , . | |||
| 35.8.8 | |||
| 35.8.9 | |||
| 35.8.10 | |||
| 35.8.11 | |||
| . | |||
| 35.8.12 | |||
| . | |||
| 35.8.13 | |||
| . | |||
Multidimensional Mellin–Barnes integrals are established in Ding et al. (1996) for the functions and of matrix argument. A similar result for the function of matrix argument is given in Faraut and Korányi (1994, p. 346). These multidimensional integrals reduce to the classical Mellin–Barnes integrals (§5.19(ii)) in the special case .
See also Faraut and Korányi (1994, pp. 318–340).