-
Notifications
You must be signed in to change notification settings - Fork 9.8k
Description
Thanks for your error report and we appreciate it a lot.
Checklist
- I have searched related issues but cannot get the expected help.
- I have read the FAQ documentation but cannot get the expected help.
- The bug has not been fixed in the latest version.
Describe the bug
AssertionError: binary_marks must have the same shape with image
Reproduction
python demo/large_image_demo.py demo/large_image.jpg rtmdet-ins_tiny_8xb32-300e_coco.py rtmdet-ins_tiny_8xb32-300e_coco_20221130_151727-ec670f7e.pth --device cpu
A placeholder for the command.
- Did you make any modifications on the code or config? Did you understand what you have modified?
No modifications have been made - What dataset did you use?
COCO
Environment
- Please run
python mmdet/utils/collect_env.pyto collect necessary environment information and paste it here.
sys.platform: linux
Python: 3.8.10 (default, Jun 4 2021, 15:09:15) [GCC 7.5.0]
CUDA available: True
numpy_random_seed: 2147483648
GPU 0: NVIDIA RTX A5000
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.3, V11.3.109
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.11.0+cu113
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.5.2 (Git Hash a9302535553c73243c632ad3c4c80beec3d19a1e)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.3
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
- CuDNN 8.2
- Magma 2.5.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.12.0+cu113
OpenCV: 4.8.0
MMEngine: 0.8.4
MMDetection: 3.1.0+769c810
- You may add addition that may be helpful for locating the problem
I completely follow the official recommended method to install mmdet_ Dev-3.1.0
Error traceback
I ran the following command on 'demo/large_image' and an error occurred:
’python demo/large_image_demo.py demo/large_image.jpg rtmdet-ins_tiny_8xb32-300e_coco.py rtmdet-ins_tiny_8xb32-300e_coco_20221130_151727-ec670f7e.pth --device cpu‘
Loads checkpoint by local backend from path: rtmdet-ins_tiny_8xb32-300e_coco_20221130_151727-ec670f7e.pth
/root/miniconda3/lib/python3.8/site-packages/mmengine/visualization/visualizer.py:196: UserWarning: Failed to add <class 'mmengine.visualization.vis_backend.LocalVisBackend'>, please provide the save_dir argument.
warnings.warn(f'Failed to add {vis_backend.class}, '
Performing inference on 1 images.... This may take a while.
[ ] 0/1, elapsed: 0s, ETA:/root/miniconda3/lib/python3.8/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
/root/autodl-tmp/mmdetection/mmdet/visualization/palette.py:90: UserWarning: floordiv is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
scales = 0.5 + (areas - min_area) // (max_area - min_area)
Traceback (most recent call last):
File "demo/large_image_demo.py", line 282, in
main()
File "demo/large_image_demo.py", line 264, in main
visualizer.add_datasample(
File "/root/miniconda3/lib/python3.8/site-packages/mmengine/dist/utils.py", line 401, in wrapper
return func(*args, **kwargs)
File "/root/autodl-tmp/mmdetection/mmdet/visualization/local_visualizer.py", line 468, in add_datasample
pred_img_data = self._draw_instances(image, pred_instances,
File "/root/autodl-tmp/mmdetection/mmdet/visualization/local_visualizer.py", line 194, in _draw_instances
self.draw_binary_masks(masks, colors=colors, alphas=self.alpha)
File "/root/miniconda3/lib/python3.8/site-packages/mmengine/dist/utils.py", line 401, in wrapper
return func(*args, **kwargs)
File "/root/miniconda3/lib/python3.8/site-packages/mmengine/visualization/visualizer.py", line 881, in draw_binary_masks
assert img.shape[:2] == binary_masks.shape[
AssertionError: binary_marks must have the same shape with image
Whether ‘demo/large_image_demo.py’ can be used for instance splitting tasks?
how can i solve?