Przejdź do zawartości

Droga (topologia)

Z Wikipedii, wolnej encyklopedii

Drogaciągłe przekształcenie z przedziału jednostkowego w przestrzeń topologiczną. Pętlą nazywa się drogę, której początek i koniec pokrywają się[1]. Ich parametr, szczególnie przy homotopiach, nazywa się niekiedy czasem.

Definicja

[edytuj | edytuj kod]

Niech oraz niech będzie przestrzenią topologiczną. Drogą nazywamy ciągłe przekształcenie

Punktem początkowym drogi jest a końcowym Często mówi się o „drodze z do ”, co oczywiście oznacza, że punkty te są odpowiednio początkowym i końcowym danej drogi.

Pętlą zaczepioną w nazywa się drogę z do Równoważnie można określić ją jako drogę taką, że lub jako ciągłe odwzorowanie okręgu jednostkowego w przestrzeń, czyli Ostatnia równoważność wynika z tego, że może być rozważane jako przestrzeń ilorazowa z utożsamionymi punktami i

Zbiór pętli w zaczepionych w nazywamy przestrzenią pętli i oznaczamy symbolem

Drogowa spójność

[edytuj | edytuj kod]
 Osobny artykuł: przestrzeń spójna.

Przestrzeń topologiczną, w której dla jej dowolnych dwóch punktów istnieje droga je łącząca, nazywa się drogowo spójną. Każda przestrzeń może zostać rozbita na zbiór drogowo spójnych składowych, który oznaczany jest często

Należy pamiętać, że droga nie jest tym samym co jej obraz. Oznacza to, że nie jest tylko podzbiorem który wygląda jak krzywa, ale przede wszystkim odwzorowaniem z daną parametryzacją. Przykładem mogą być odwzorowania oraz będące dwiema różnymi drogami z do na prostej rzeczywistej.

Przestrzenie z wyróżnionym punktem

[edytuj | edytuj kod]

Można także badać drogi i pętli w przestrzeniach topologicznych z wyróżnionym punktem, które są ważnymi obiektami w teorii homotopii. Niech będzie taką przestrzenią, drogą w nazywa się te drogi w których punktem początkowym jest Analogicznie pętlą w nazywa się pętle zaczepione w

Homotopia

[edytuj | edytuj kod]
Homotopia między dwiema drogami.
 Osobny artykuł: homotopia.

Homotopia dróg i pętli jest niezwykle ważnym środkiem badawczym w dziale topologii algebraicznej, nazywanym teorią homotopii. Homotopia między drogami jest uściśleniem intuicji ciągłej deformacji drogi w jednostce czasu (którą jest przedział jednostkowy ) przy zachowaniu jej punktów końcowych.

Homotopia między pętlami zaczepionymi we wspólnym punkcie pozwala przyporządkować przestrzeni topologicznej z wyróżnionym punktem grupę podstawową. Okazuje się, że jeżeli wspomniana przestrzeń jest łukowo spójna, to wybór punktu zaczepienia jest nieistotny.

Homotopią dróg z do w nazywamy rodzinę dróg taką, że

  • i są stałe,
  • odwzorowanie dane wzorem jest ciągłe.

Pętle

[edytuj | edytuj kod]

Homotopią pętli nazywamy homotopię łączącą oraz spełniającą warunek dla

Dla powyższej homotopii każda droga jest pętlą w zaczepioną w Należy pamiętać, że na homotopię pętli nakłada się dodatkowy warunek: mianowicie aby punkt zaczepienia nie ulegał przesunięciu.

Równoważność

[edytuj | edytuj kod]

Drogi i pętle między którymi zachodzi homotopia, nazywa się homotopijnymi. Podobnie jak homotopia dowolnych przekształceń, homotopie dróg w i pętli w relacjami równoważności. Klasa równoważności drogi tej relacji nazywana jest klasą homotopii i oznaczana często

Składanie

[edytuj | edytuj kod]

Załóżmy, że jest drogą z do zaś z do Złożeniem dróg i nazywamy drogę zdefiniowaną jako uprzednie przejście po a następnie po

Jeżeli rozważymy wszystkie pętle zaczepione w to złożenie dróg staje się działaniem dwuargumentowym. Złożenie dróg nie jest łączne z powodu różnic w parametryzacjach, jednakże jest łączne na poziomie homotopii, tj.

Grupa podstawowa

[edytuj | edytuj kod]
 Osobny artykuł: grupa podstawowa.

Składanie dróg określa na zbiorze klas homotopii pętli zaczepionych we wspólnym punkcie strukturę grupy, nazywanej grupą podstawową i oznaczaną

Zobacz też

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]
  1. pętla, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-10-12].

Bibliografia

[edytuj | edytuj kod]
  • S. Betley, J. Chaber, E. i R. Pol, Topologia I wykłady i zadania, skrypt 2005.