Field of Science

Showing posts with label Macroheterocera. Show all posts
Showing posts with label Macroheterocera. Show all posts

Ophiusini Corrections

Earlier this year, I presented a post on the noctuoid moth tribe Ophiusini. As it turns out, that post includes some notable errors. One of the main sources I used, Zahiri et al. (2012), stated that Ophiusini "have a strongly modified apex to the proboscis, with strong and enlarged spines and erectile, reversed hooks that are used in fruit-piercing or lachrymal-feeding behaviour". As reviewed by Zilli (2021), such hooks on the proboscis are unique to a separate subgroup of the family Erebidae, the Calpinae. Ophiusini have thin, nail-like spines on the proboscis but no erectile hooks. They are still fruit-piercers but no ophiusins have been observed to date engaging in lachrymal feeding.

Artena dotata, copyright Shipher Wu.


Zilli (2021) had further comments on the historically fraught concept of Ophiusini. As noted in my earlier post, 'Ophiusini' has historically been recognised as a cosmopolitan group of moths but molecular studies have lead to its restriction to the Old World, North American exemplars being transferred to the related tribe Poaphilini. However, though the two groups are each supported as monophyletic by molecular data, they are not well defined morphologically. Characters previously thought distinct to one or the other do not always hold true. Ophiusini have been described as having reduced coremata but some ophiusins have coremata larger than those of some poaphilins. Ophiusins have been supposed to lack the waxy bloom on the pupa found in other noctuoids but some species do indeed have such a bloom. Some have pointed to the use of Euphorbiaceae as host plants by Poaphilini but not Ophiusini, but not all poaphilins feed on Euphorbiaceae and their use of this plant family is generally correlated with species being more generalist feeders overall.

One character that may yet distinguish the two tribes is the location of the androteca, a groove along the top of one of the leg segments in the male that contains a long brush of dense hairs (I'm not sure just what the function of this structure is meant to be but I would suspect something to do with dispersing pheromones). In Ophiusini, this structure is found on the femur of the fore leg. In Poaphilini, it is on the tibia of the mid leg. Nevertheless, Zilli (2021) questions the reliability of this feature: both arrangments are found in other tribes and neither alone is diagnostic.

Conversely, molecular phylogenies support the two tribes as sister taxa, and they share a number of distinctive features of the terminalia. While he does not formalise the suggestion, Zilli (2021) seems to feel that we might be better served by a return to a broader Ophiusini uniting the two tribes as one. I commented in my previous post that noctuoid classification has been in a continuous flux for as long as it has been a thing. It would be presumptuous to believe that it has finally been settled.

REFERENCES

Zahiri, R., J. D. Holloway, I. J. Kitching, J. D. Lafontaine, M. Mutanen & N. Wahlberg. 2012. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Systematic Entomology 37: 102–124.

Zilli, A. 2021. Tabwecala robinsoni gen. nov., sp. nov., from Vanuatu and its systematic postion in the 'Ophiusini-Poaphilini' clade (Lepidoptera, Erebidae). Nota Lepidopterologica 44: 193–211.

Piercing Fruit and Piercing Souls

The moths of the superfamily Noctuoidea are one of the most diverse subsections of the Lepidoptera, with probably somewhere between fifty and seventy thousand species known to date (Zahiri et al. 2012; as with other massively diverse clades, the lack of proper checklists and revisions makes the question of species number surprisingly difficult to answer). For many people, the classic image of a 'moth' will evoke a noctuoid: broad-winged, often nocturnal, often predominantly brown or grey in colour. Obviously, a group this size is going to have a complex taxonomy, and one of the significant subgroups of the noctuoids is the tribe Ophiusini.

Variable drab moth Ophiusa mejanesi, copyright Bernard Dupont.


Historically, the classification of noctuoids has been something of a mess. One researcher commented in 1975 that "It is exceptional to find any two authors who use the same combination of subfamily names within the Noctuidae" and Zahiri et al. admitted in 2012 that the validity of this statement still stood. Until recently, the majority of noctuoids were dumped in a broad family Noctuidae but recent studies (particularly influenced by molecular data) have lead to a significant rearrangement. As a result, the Ophiusini went from being usually placed in the family Noctuidae, subfamily Catocalinae, to the family Erebidae, subfamily Erebinae. A number of genera previously included in the Ophiusini were also transferred elsewhere; most notably, these included all New World representatives so the Ophiusini are now regarded as an exclusively Old World group.

Thyas juno, copyright Alexey Yakovlev.


The Ophiusini are mostly robust-bodied moths with wings of a fairly uniform background colour marked with simple, linear lines on the forewings. The males lack well-developed coremata (eversible structures used for dispersing pheromones) on the genital valves. The caterpillars are elongate semi-loopers with the front two pairs of abdominal prolegs much reduced compared to the rear two pairs. Larvae have been recorded from a wide range of host plant families but the most commonly exploited hosts are members of the Combretaceae and Myrtaceae (Holloway 2005). The pupa lacks the waxy bloom found in many other erebines.

Caterpillar of guava moth Ophiusa disjungens, copyright Robert Whyte.


Many members of the Ophiusini also have a modified apex to the adult proboscis bearing strong, enlarged spines and reversed, erectile hooks (Zahiri et al. 2012). This formidable apparatus is used to pierce the skins of fruits, allowing the moth to feed on their juice. As well as damage caused by browsing caterpillars, ophiusins may therefore also be of concern to horticulture due to damage from this fruit-piercing behaviour. As well as the damage caused by the moth itself, the resulting holes may allow the fruit to be attacked by disease or other insects not capable of breaching the rind themselves. The modified proboscis may also function in what is somewhat daintily referred to as lachrymal feeding: the process of applying the proboscis to the eyes of mammals (more rarely birds) and feeding on secreted fluids. Yes, these are moths that can potentially destroy an orchardist's crop... and then proceed to drink his tears.

REFERENCES

Holloway, J. D. 2005. The moths of Borneo (part 15 & 16): family Noctuidae, subfamily Catocalinae. Malayan Nature Journal 58: 1–529.

Zahiri, R., J. D. Holloway, I. J. Kitching, J. D. Lafontaine, M. Mutanen & N. Wahlberg. 2012. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Systematic Entomology 37: 102–124.