Field of Science

Showing posts with label Pterygota. Show all posts
Showing posts with label Pterygota. Show all posts

Opening Dors

My current dayjob mostly revolves around identifying and counting dung beetles. When Europeans settled Australia, they brought their farm animals with them. Unfortunately, the large piles of dung produced by cattle and horses proved rather daunting to native scavengers used to the more compact droppings of kangaroos and possums. And if you've ever experienced an Australian summer, you'll know that flies are definitely a thing. To help with this situation, Australia has had a long-running programme introducing exotic dung beetles that are better able to clean up after livestock. Most of these are members of the typical dung beetle family Scarabaeidae but one species, Geotrupes spiniger, represents a different subgroup of the superfamily Scarabaeoidea. These are the earth-boring dung beetles or dor beetles of the Geotrupidae.

Dor beetle Geotrupes spiniger, copyright Udo Schmidt.

The geotrupids are medium-sized to very large beetles, ranging in size from half a centimetre to 4.5 cm in length (Jameson 2002). Like many other members of the Scarabaeoidea, they have broad fore legs used for digging. Their short, eleven-segmented antennae end in the asymmetrical club typical of scarabaeoids but they may be distinguished from other families in that the basal segment of the three-segmented club is expanded to form a 'cup' against which the other segments may be tightly closed. The body of geotrupids is strongly convex, and is smooth and shiny dorsally but hairy underneath. In many species, the males may bear elaborate horns and/or processes on the head and pronotum.

Male Taurocerastes patagonicus, copyright Nicolás Lavandero.


Despite their size, geotrupids are secretive animals, spending most of their time in burrows underground (which may be up to three metres in depth) and usually only emerging at night. Various species feed on animal dung or decaying matter; some feed on subterranean fungi. In at least some species, eggs are laid in brood chambers within the parent's home burrow and multiple life stages may share a single burrow. Burrows may also be shared between multiple adults when conditions demand. Though adults do not directly tend to larvae, they may stock brood chambers with food supplies. In some Australian species of the subfamily Bolboceratinae, females lay a single gigantic egg at a time that may be up to 56% the size of its layer (Houston 2011). Larvae hatching from such an egg are able to develop right through to maturity without feeding.

Adult geotrupids produce a stridulating noise when disturbed which is the origin of the alternate vernacular name of "dor beetle" ("dor" being an old word for a buzzing insect). Larvae may or may not be capable of stridulation, depending on the species.

Male Blackburnium rhinoceros, copyright Edward Bell.


The classification of geotrupids is the subject of ongoing investigation. A recent classification divides the family between three subfamilies, the widespread Geotrupinae and Bolboceratinae and the South American Taurocerastinae. Morphological differences between these subfamilies, particularly at the larval stage, have lead some researchers to question whether the Geotrupidae in the broad sense represents a monophyletic group. Molecular analyses thus far seem ambiguous; an analysis by McKenna et al. (2015) placed geotrupids as part of a polytomy near the base of the scarabaeoids. As an aside, my supervisor recently asked myself and a retired colleague whether Geotrupes spiniger was the only species of geotrupid found in Australia. I replied "yes", our colleague responded "no". Our conflict, of course, was based on whether Australia's wide diversity of Bolboceratinae contributed to the count.

REFERENCES

Houston, T. F. 2011. Egg gigantism in some Australian earth-borer beetles (Coleoptera: Geotrupidae: Bolboceratinae) and its apparent association with reduction or elimination of larval feeding. Australian Journal of Entomology 50: 164–173.

Jameson, M. L. 2002. Geotrupidae Latreille 1802. In: Arnett, R. H., Jr, M. C. Thomas, P. E. Skelley & J. H. Frank (eds) American Beetles vol. 2. Polyphaga: Scarabaeoidea through Curculionoidea pp. 23–27. CRC Press.

McKenna, D. D., B. D. Farrell, M. S. Caterino, C. W. Farnum, D. C. Hawks, D. R. Maddison, A. E. Seago, A. E. Z. Short, A. F. Newton & M. K. Thayer. 2015. Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles. Systematic Entomology 40: 35–60.

Psalidothrips

Many of you may know thrips as small insects that infest buds and young shoots of garden plants, stymieing growth and causing malformed development. However, there is also a wide diversity of thrips species that feed on fungi, inhabiting leaf litter and other fallen vegetation. In tropical and subtropical regions of the world, one of the more numerous genera of such fungus-feeders is Psalidothrips.

Winged female (left) and wingless male of Psalidothrips comosus, from Zhao et al. (2018).


Close to fifty species of Psalidothrips have been described from various locations around the world (Wang et al. 2019). They are most commonly found among leaf litter and are believed to feed on fungal hyphae. Most Psalidothrips are relatively small, pale thrips, yellowish or light brown in coloration. As members of the family Phlaeothripidae, the last segment of the abdomen is modified into a tube ending in a ring of setae; in Psalidothrips, this tube is commonly short and the terminal setae are often longer than the tube.

As is common among thrips, the recognition of Psalidothrips and its constituent species is often complicated by within-species variation. Many species are known as both winged and wingless forms (Wang et al., 2019, note that Australian species seem particularly prone to winglessness). Wingless forms often show reductions in the sclerotisation of the thorax. It is difficult to name a single feature of the genus that does not find exception in some species or other. Most species are weakly sculpted. For the most part, the maxillary stylets are short and sit low and far apart in the head when retracted. The mouth-cone is similarly short and rounded. The head is often fairly short with rounded cheeks that do not bear strong setae. Setae on the anterior margin of the pronotum are often reduced. The wings, if present, are often more or less constricted at about mid-length. Many phlaeothripids possess a series of large setae on the abdomen that hold the wings in place when folded back; in individuals of Psalidothrips with such setae (obviously, they tend to disappear in wingless individuals), they are often relatively few in number and simply curved.

Many of these features are related to the thrips' litter-dwelling habits. The short mouthparts, for instance, presumably reflect how these thrips are gleaning fungi from the surface of leaves without needing to pierce the leaf's cuticle. As such, it will be interesting to see how the genus holds out as our understanding of thrips phylogeny improves. Is this a true evolutionarily coherent assemblage, or disparate travellers who are following a fashion?

REFERENCE

Wang, J., L. A. Mound & D. J. Tree. 2019. Leaf-litter thrips of the genus Psalidothrips (Thysanoptera, Phlaeothripidae) from Australia, with fifteen new species. Zootaxa 4686 (1): 53–73.

Lichen Darklings

The beetles of the family Tenebrionidae, often referred to as the darkling beetles, are a diverse bunch. Members of this family have adapted to a wide range of lifestyles, coming in a variety of body types. Among the more obscure representatives of the tenebrionids are the members of the Southern Hemisphere tribe Titaenini.

Titaena sp., copyright Martin Lagerwey.


Members of the Titaenini have a typical Gondwanan distribution, being known from southern and eastern Australia, New Zealand, New Caledonia and southern South America (Matthews & Bouchard 2008). They grow up to about a centimetre and a half in length with an elongate, parallel-sided body shape that is more or less cylindrical. The prothorax is relatively short, allowing the head to be held vertically in the Australian genus Titaena. Antennae are short with fairly simple segments not forming a club at the end. Legs have similarly simple tarsi. The tribe is distinguished from other, similar darkling beetles by the epipleura (the flattened underside of the elytral margins) which are shortened, not reaching the elytral apex. Members of the Titaenini have large repugnatorial glands opening near the end of the abdomen. In the Australian genus Titaena, at least, species are usually metallic blue or green in coloration.

The habits of the Titaenini are poorly known. As far as we do know, their larvae are specialised feeders on lichen. Adults probably pursue a similar diet. This is an exposed lifestyle, one in which you could easily come to the attention of predators, and the bright coloration of Titaena probably functions to warn off any such unwelcome interest.

REFERENCE

Matthews, E. G., & P. Bouchard. 2008. Tenebrionid Beetles of Australia: Descriptions of tribes, keys to genera, catalogue of species. Australian Biological Resources Study: Canberra.

Rasahus albomaculatus, the White-Spotted Corsair

Though the Hemiptera began their long evolutionary history as plant-feeders, many of their subgroups later switched to a predatory lifestyle, their suctorial mouthparts being just as suited for stabbing flesh as vegetation. Among the most successful of the predatory bugs where the assassin bugs of the family Reduviidae.

Image copyright Jacob Gorneau.


This is Rasahus albomaculatus, a widespread assassin of the Neotropical region, found from Mexico to Argentina (Coscaron 1983). Though not one of the largest members of its genus, R. albomaculatus is a decent-sized bug, growing close to an inch in length. Rasahus is a genus of the reduviid subfamily Peiratinae, commonly known as corsairs for their fearsome aspect. Features distinguishing Rasahus from other genera of corsairs include their large eyes, a deep grove across the head in front of the ocelli, long procoxae, and well-developed spongy pads on the fore- and mid-tibiae. Rasahus albomaculatus is distinguished from other species of the genus by its colour pattern. The body is mostly black with white patterning on the wings. Stripes along the top of the wing and across the mid-length form a crude H-shape when the wings are closed, with separate spots towards the base of the wing and towards the tip. Other noteworthy features include a lack of granulation on the pronotum, and a rounded apex to the scutellum (Swanson 2018).

Corsairs are mostly predators of other insects and not often dangerous to humans (though their bite is supposed to be very painful). Indeed, they may be beneficial to humans as among their prey are believed to be other reduviids of the subfamily Triatominae, the blood-sucking "kissing bugs" that spread Chagas disease (contrary to the Wikipedia page on the western corsair R. thoracicus, corsairs do not spread Chagas themselves). Rasahus albomaculatus may provide its vertebrate co-habitants with far more comfortable living conditions.

REFERENCES

Coscarón, M. del C. 1983. Revision del genero Rasahus (Insecta, Heteroptera, Reduviidae). Revista del Museo de La Plata (nueva serie) (Zoologia) 13: 75–138.

Swanson, D. R. 2018. Three new species of Rasahus, with clarification on the identities of three other Neotropical corsairs (Heteroptera: Reduviidae: Peiratinae). Zootaxa 4471 (3): 446–472.

Allendesalazaria nymphoides, the Hidden Blister Beetle

The blister beetles of the family Meloidae have attracted attention for a number of reasons. One is their production of caustic defensive chemicals which may be powerful enough to cause severe injury to humans or their livestock. Another is their remarkable life cycles. Many blister beetles develop as nest predators or kleptoparasites of bees. The larvae of these species are hypermetamorphic with the first instar being more mobile than later stages. These mobile larvae will find bees and latch onto them so that they can be carried to the host's nest.

Allendesalazaria nymphoides, copyright Stanislav Krejcik.


This association reaches an extreme in Allendesalazaria nymphoides of north-west Africa. This reclusive species has, to date, been recorded from localities in Morocco, Algeria and Mauritania (Bologna & Aberlenc 2002). It is readily distinguished from other blister beetles by its much-reduced elytra which are oval and widely separated from each other. It is also distinguished by claws that lack the free lower blade found in most other meloids (Bologna & Pinto 2002). Whether they produce the noxious chemicals known from other members of their family, I haven't found a record.

Allendesalazaria nymphoides develops in the nests of solitary burrowing bees of the genus Anthophora. Adults of A. nymphoides do not feed, and never emerge from the nest in which they matured. Instead, they lay their own eggs within that same nest. Dispersal is then left to the hatching larvae that (I presume) latch onto those emerging bees that escaped their parents' depredations. Eventually, the new generation of bees will establish nests of their own. And when they do, the blister beetles will be ready for them.

REFERENCES

Bologna, M. A., & H.-P. Aberlenc. 2002. Allendesalazaria, un nouveau genre de Meloidae pour la faune saharienne (Coleoptera). Bulletin de la Société Entomologique de France 107 (2): 191–192.

Bologna, M. A., & J. D. Pinto. 2002. The Old World genera of Meloidae (Coleoptera): a key and synopsis. Journal of Natural History 36 (17): 2013–2102.

The Running of the Termites

I don't know how many people would profess to have a favourite genus of termites. Which is a shame, because there are some real stand-out examples. Snapping termites, magnetic termites, glue-spraying termites... For my own part, though, I have a particular fondness for the Australian harvester termites of the genus Drepanotermes.

Soldiers and workers of Drepanotermes perniger, copyright Jean Hort.


Nearly two dozen species of Drepanotermes are found on the Australian continent to which they are unique (Watson & Perry 1981). They are arid-environment specialists, being most diverse in the northern part of Australia. My reasons for being so fond of them are, I'll admit, decidedly prosaic. The worker caste of most termite species is very difficult if not impossible to identify taxonomically; one termite worker usually looks very much like another. Drepanotermes workers, however, are different. The name Drepanotermes can be translated as "running termite" and, as befits their name, Drepanotermes of all castes stand out for their distinctly long legs. Soldiers of Drepanotermes also have distinctively shaped mandibles which are sickle-shaped and have a single projecting tooth on the inner margin. They are similar to soldiers of the related genus Amitermes (of which Drepanotermes may represent a derived subclade) but the mandibles of Amitermes tend to be straighter and more robust.

The long legs of Drepanotermes reflect their active harvester lifestyles. Workers will emerge from the nest at night in search of food to carry back home. In the red centre of Australia they will primarily collect spinifex; they will also take fallen leaves, tree bark and the like. Soldiers keep guard while the workers forage. I've found them clustered around a nest entrance of an evening, just their heads poking out to snap at passers-by. Workers may wander up to about half a metre from the nest entrance as they forage. The concentrations of vegetable matter produced by Drepanotermes storing food sources in their nest may form a significant factor in the nutrient profile of areas where they are found.

Alate and soldiers of Drepanotermes rubriceps, copyright Jean Hort.


Depending on species and circumstance, the nests of Drepanotermes may be mounds or entirely subterranean with the latter being the majority option. They prefer compact soils such as clay though they may burrow through looser soils where there is a denser subsoil. Drepanotermes may construct their own nest or move into nests constructed by other termites. One aptly named species, D. invasor, seems to take over pre-existing nests more often than not. Subterranean nests are arranged as a series of chambers about five to ten centimetres in diameter connected by tunnels. These chambers may be arranged vertically, one below another, or they may form a rambling transverse network. Above ground, subterranean nests may be visible as an open circle devoid of vegetation. The ground in these circles is hard as concrete and may remain clear for decades after the actual nest has gone. Walsh et al. (2016) refer to the remains of nests protruding above ground along vehicle tracks after the soil around them has worn down. Local people have a long history of taking advantage of the open space offered by termite nests, such as to move more easily through scrub or as resting or working places.

The alate castes of Drepanotermes tend to be poorly known. Indications are that mature reproductives spend little time in the parent nest before leaving to breed. For most species, breeding flights take place in late summer. Alates may emerge either by day or night. The time of emergence seems to depend on the species; night-flying alates have distinctly larger eyes than day-fliers. Unfortunately, because alates have rarely been collected in association with a nest, we are largely still unable to tell which alates belong to which species.

REFERENCES

Walsh, F. J., A. D. Sparrow, P. Kendrick & J. Schofield. 2016. Fairy circles or ghosts of termitaria? Pavement termites as alternative causes of circular patterns in vegetation of desert Australia. Proceedings of the National Academy of Sciences of the USA 113 (37): E5365–E5367.

Watson, J. A. L., & D. H. Perry. 1981. The Australian harvester termites of the genus Drepanotermes (Isoptera: Termitinae). Australian Journal of Zoology, Supplementary Series 78: 1–153.

Hydroglyphus pusillus, the Tiny Tiger

Hydroglyphus pusillus, copyright Udo Schmidt.


Let's take another visit to the world of diving beetles. Above is Hydroglyphus pusillus, one of the few representatives in northern Europe of a genus that otherwise includes close to ninety species spread through the Old World, primarily in the tropics. Hydroglyphus species are tiny diving beetles, only about two or three millimetres in length, with an elongate oval body shape. Characteristic features of the genus include basal striae on the pronotum and elytra, sutural striae on the elytra, and no transverse stria on the top of the head (Watts 1978, as Guignotus, a subsequently synonymised name). Species are often marked with distinctive colour patterns of streaks and blotches.

Hydroglyphus pusillus attacking larva of mosquito Culex pipiens, from Bellini et al. (2000).


Despite their small size, Hydroglyphus species are (like other diving beetles) voracious predators of other aquatic insects. Bellini et al. (2000) investigated the possible role of H. pusillus in controlling mosquito larvae in flooded rice fields in Italy. The larvae of H. pusillus mostly kept to the bottom sediment (so might be expected to be hunting prey other than mosquitoes) but adults were the most abundant diving beetle in the water column at the surveyed locations. One might expect that H. pusillus would not be effective predators of mosquito larvae that greatly outsized them. One would be wrong: not only are they indeed capable of taking down mosquitoes, Bellini et al. went so far as to describe their effects as "a real slaughter". A diving beetle latching onto a mosquito larva would soon find itself joined by others seemingly scenting haemolymph in the water. Between them, this mob of beetles could destroy a larva in a matter of seconds. Tiny, but terrifying.

REFERENCES

Bellini, R., F. Pederzani, R. Pilani, R. Veronesi & S. Maini. 2000. Hydroglyphus pusillus (Fabricius) (Coleoptera Dytiscidae): its role as a mosquito larvae predator in rice fields. Boll. Ist. Ent. "G. Grandi" Univ. Bologna 54: 155–163.

Watts, C. H. S. 1978. A revision of the Australian Dytiscidae. Australian Journal of Zoology, Supplementary Series 57: 1-166.

Tillinae

Tillus elongatus, copyright Gilles San Martin.


The above individual is a representative of a species of the subfamily Tillinae of the beetle family Cleridae. Clerids are a widespread group of moderate-sized beetles, larger individuals being about a centimetre in length, but most species tend to attract little attention from humans. They are mostly predators in confined spaces (Gunter et al. 2013): larvae hunt down wood-boring insects in their burrows, or the young of bees and wasps in their nests, whereas adults hunt for other insects under bark. Adults are more or less elongate in shape and commonly have an even covering of setae and a prominently punctate dorsum. The legs have five-segmented tarsi, each tarsus often with multiple segments lobed. Clerids are commonly referred to as 'checkered beetles' in reference to the contrasting colour patterns of many species but, as you can clearly see, not all clerids have such checkered patterns.

The subfamilial classification of clerids has shifted around a lot in the past but the Tillinae have been one of the more consistently recognised subfamilies. The feature most consistently separating tillines from other clerids is that the fore coxal cavities are both externally and internally closed: that is, the external rim and internal collar around the fore coxae are both complete rather than being interrupted posteriorly. Other distinctive features of the tillines are that all five tarsal segments are well developed and distinct, the pronotum is campanulate (bell-shaped) or bisinuate, and the eyes usually have coarse ommatidia (Burke & Zolnerowich 2017).

Cylidrus megacephalus, copyright Udo Schmidt.


The taxonomy of tillines is (as always) in great need of study. Around 550 or more species have been assigned to the subfamily worldwide, with the highest diversity in the Afrotropical and Oriental regions. However, many species can be quite variable in appearance and it is suspected that many previously described species may turn out to be synonyms. The situation is not helped by many species being rarely collected. For instance, Bostrichoclerus bicornis is a remarkable species distinguished by the presence of a pair of prominent, apically bifurcate horns arising alongside the antennal insertions. To date, this species is known from just two specimens, collected at separate locations in Baja California and southern California (Burke & Zolnerowich 2017).

A molecular phylogenetic analysis of the Cleridae by Gunter et al. (2013) suggested that the Tillinae represent the sister group of all other clerids. While unexpected from a morphological perspective, this result does tally with the long recognition of the tillines as a distinctive group. They may prove to have interesting things to tell us about the evolution of the clerids as a whole.

REFERENCES

Burke, A., & G. Zolnerowich. 2017. A taxonomic revision of the subfamily Tillinae Leach sensu lato (Coleoptera, Cleridae) in the New World. ZooKeys 179: 75–157.

Gunter, N. L., J. M. Leavengood, J. S. Bartlett, E. G. Chapman & S. L. Cameron. 2013. A molecular phylogeny of the checkered beetles and a description of Epiclininae a new subfamily (Coleoptera: Cleroidea: Cleridae). Systematic Entomology 38 (3): 626–636.

Booklice: The Cutest of Pests

Humans have a tendency to think of 'nature' and the 'environment' as something distinct from our own society. Environments unmodified by humans are seen as 'natural' whereas structures created by human activity, such as buildings, are not 'natural' and thought to be somehow outside the 'environment'. As such, people often react strongly to the idea of things associated with the 'environment', such as non-human wildlife, encroaching on their homes. But of course, human houses are as much an environment of their own as any other of the world's habitats, and many animals find them to be places where they can thrive. Among the animals that most regularly share our houses with us are booklice of the genus Liposcelis.

Liposcelis bostrychophila, copyright Andreas Eichler.


Representatives of Liposcelis can be found almost anywhere in the world except in the coldest of regions. About 130 species have been described in the genus to date (Yoshizawa & Lienhard 2010) with doubtless more yet to be discovered (by comparison, Broadhead's review of the genus in 1950 recognised only 22 species, with a six-fold increase since then). The family Liposcelididae, to which Liposcelis belongs, differ from other free-living members of the Psocodea (or 'Psocoptera') in their flattened body form, as well as being smaller than most other examples (Liposcelis grow little more than a millimetre in length). In the flattened habitus, they resemble the parasitic true lice of the Phthiraptera, and recent studies have agreed that the liposcelidids represent the closest relatives of true lice (Yoshizawa & Lienhard 2010). Liposcelis species are readily distinguished from other liposcelidids by the shape of the hind legs: an obtuse tubercle on the outer margin of the hind femur gives it a distinctly broad appearance* (indeed, the genus name Liposcelis translates into English as 'fat thigh'). Liposcelis are also distinctive in being invariably wingless; other liposcelidid species typically come in both winged and wingless forms. Though the genus as a whole is easily recognised, distinguishing individual species is often a far more challenging prospect requiring microscopic examination of fine features of the chaetotaxy (arrangement of bristles on the body) and cuticular sculpture. Authors have divided Liposcelis species between a number of diagnostic sections and subgroups based on these and other features but the monophyly or otherwise of these subdivisions is largely unstudied.

*This feature is also shared with a cave-dwelling species from Ascension Island currently placed in its own genus, Troglotroctes ashmoleorum, but it seems more than likely that this species is itself a derived offshoot of Liposcelis.

Liposcelis species can feed on a wide range of organic matter but, like other 'Psocoptera', their primary source of food is probably yeasts and fungal spores (their vernacular name has been attributed to their feeding on yeasts growing on the glue binding books, though I would note that they are also probably more likely to be seen crawling on the light background of a book's page than in other, less closely examined corners of the house). Turner (1994) provided a detailed review of the natural history of one of the most widespread domestic pest species in the genus, L. bostrychophila, and reports that he was able to maintain cultures on "'Weetabix'™, 'Shreddies'™, baby rice, soya granules, sage and onion stuffing mix, skimmed milk powder, 'Oat Krunchies'™, red lentils, and yellow split peas". Other stored foods from which complaints had been received of booklice included "sugar, bread, salt, bay leaves, gelatine powder, poppadoms, custard powder, dried yeast, instant potato, nuts, dried fruit, baby food, sauce mix, dried mushrooms, pasta, coconut, cocoa, milk powder, spices, glace cherries, garlic, baking powder, icecream mix, dried soup, cracked wheat, carob powder, maize meal, wheat germ, jellied sweets and bread crumbs". They have also been found on cured meat and may damage curated insect specimens. As well as obtaining moisture from their food, Liposcelis are also able to extract water directly from the atmosphere owing to the hygroscopic properties of their saliva. A booklouse will hold a drop of saliva inside its mouth, then swallow it when the ball has absorved enough water from the air.

Liposcelis sp. (possibly L. meridionalis?) from southern France, copyright Jessica Joachim.


Female Liposcelis bostrychophila generally reach maturity and begin producing eggs about two weeks after hatching and may produce two or three eggs a day. As each egg is about one-third the size of the adult, this means that a female at peak fecundity is producing her own body mass in eggs in a single day. Most Liposcelis species reproduce sexually but some are parthenogenetic. Domestic L. bostrychophila, for instance, seem to be entirely parthenogenetic with males of the species only known from isolated collections in Hawaii, Arizona and Senegal (Georgiev et al. 2020). Studies on an unnamed species of Liposcelis from Arizona found that sex determination seemed to be facultative, determined by the mother, with no evidence for differentiated sex chromosomes (Hodson et al. 2017). Females seemed to produce more males early in life and more females later. The same studies also established the occurrence of paternal genome elimination in this species, where chromosomes inherited from the father were inactivated in the offspring and not passed on to their own progeny (which raises the question that, if males are effectively a genetic dead end, why would a female produce male offspring at all?) Paternal genome elimination has also been found in the human louse Pediculus humanus, and may be characteristic of the broader clade encompassing these species, but other species remain unstudied. Liposcelis genomes are also remarkable in the occurrence of fragmentation of the mitochondrial genome. Whereas some Liposcelis species have only a single mitochondrial chromosome, as is standard for most other animals, some species have the mitochondrial genome divided between two, three, five or seven chromosomes (Feng et al. 2019). The functional significance, if any, of this feature remains unknown.

Though booklice may be found in houses and stores on the regular, they are mostly only minor pests, only causing distress when reaching large numbers (an exceptional case quoted by Turner, 1994, involved a house in New Jersey at the beginning of the 1900s that became so infested "'that a pinpoint could not have been put down without touching one or more of these bugs"). They are not believed to transmit pathogens, except perhaps incidentally by carrying microbes from one store to another. For the most part, these little beasties are just another part of the wildlife that shares our homes with us, whether we are aware of them or not.

REFERENCES

Feng, S., H. Li, F. Song, Y. Wang, V. Stejskal, W. Cai & Z. Li. 2019. A novel mitochondrial genome fragmentation pattern in Liposcelis brunnea, the type species of the genus Liposcelis (Psocodea: Liposcelididae). International Journal of Biological Macromolecules 132: 1296–1303.

Georgiev, D., A. Ostrovsky & C. Lienhard. 2020. A new species of Liposcelis (Insecta: Psocoptera: Liposcelididae) from Belarus. Ecologica Montenegrina 29: 41–46.

Hodson, C. N., P. T. Hamilton, D. Dilworth, C. J. Nelson, C. I. Curtis & S. J. Perlman. 2017. Paternal genome elimination in Liposcelis booklice (Insecta: Psocodea). Genetics 206: 1091–1100.

Turner, B. D. 1994. Liposcelis bostrychophila (Psocoptera: Liposcelididae), a stored food pest in the UK. International Journal of Pest Management 40 (2): 179–190.

Yoshizawa, K., & C. Lienhard. 2010. In search of the sister group of the true lice: a systematic review of booklice and their relatives, with an updated checklist of Liposcelididae (Insecta: Psocodea). Arthropod Systematics and Phylogeny 68 (2): 181–195.

Snakes and Lace

The holometabolous insects—that is, the clade containing most insects with a complex life cycle including differentiated larval and pupal stages—is one of the most extensive radiations of animals on this planet. Much of this diversity is assigned to four major orders: wasps, moths, beetles and flies. But there are also a number of smaller lineages making up the holometabolous insects. Among these are the lacewings and their relatives in the clade Neuropterida.

Female snakefly Puncha ratzeburgi, copyright Hectonichus.


Modern members of the Neuropterida are generally recognised as belonging to three orders—the lacewings and ant-lions in the Neuroptera, the snakeflies in the Raphidioptera, and the alderflies and dobsonflies in the Megaloptera—though go back a few decades and you may find texts referring to a single order Neuroptera. A number of authors have advocated for use of the name 'Planipennia' for the lacewing order to avoid confusion with the broader sense of Neuroptera but, while a case could certainly be made for this usage, it's just never really caught on. Most neuropteridans are fairly similar in overall appearance: long-bodied insects with well developed wings with numerous crossveins. Of the living holometabolous insects, they probably bear the greatest overall resemblance to the clade's ancestors and hence they are commonly thought of as 'relicts'. However, they do possess their own specialisations and are not primitive in every regard (for instance, the most primitive egg-laying apparatus among holometabolous insects belong to wasps). Species of Neuropterida are mostly predators as larvae. The larvae of the lacewing family Ithonidae may possibly feed on decaying plant matter though we don't know for certain (Grimaldi & Engel 2005). Adults are predators and/or pollen-feeders, or may not feed at all in some short-lived forms.

Male (above) and female dobsonflies Corydalus cornutus, copyright Didier Descouens.


The exact relationships between the neuropteridan orders have been debated over the years. Though most of their obvious similaities to each other represent shared ancestral features, there is a broad consensus that they do indeed form a clade. There has also been little, if any, question of the monophyly of the Raphidioptera and Neuroptera; the monophyly of Megaloptera has been more debated but seems more likely than not. Most recent studies have suggested that the Raphidioptera are the sister group to a clade of the other two orders (Engel et al. 2018). Raphidioptera are the least diverse of the generally recognised living orders of insects with about 250 known species. They are found in cooler regions of the Northern Hemisphere—in the temperate zone or at higher elevations in lower latitudes—and are completely absent from the Southern Hemisphere (Aspöck & Aspöck, 1991, refer to a failed attempt to introduce them to Australia and New Zealand but provide no details why such a thing was tried in the first place). They are characterised by a notably elongate prothorax (the first segment of the thorax) which explains the vernacular name of 'snakefly'. Larvae live under bark or in litter and moult into pupae with the onset of cold weather. The pupae of Raphidioptera and Megaloptera are primitive in aspect, with legs separate from the body wall, and are highly mobile. Engel et al. (2018) even refer to the pupae of Raphidioptera as 'active predators' but I've not been able to find corroborating details for that remarkable description.

The Megaloptera are often particularly large neuropteridans, reaching up to twenty centimetres in wingspan, and comprise a bit less than 400 species worldwide, mostly found in temperate regions. Larvae are aquatic, living under rocks and debris, and characterised by the presence of filamentous lateral gills on the abdomen. Adults are short-lived and feed little if at all. Male dobsonflies (of the subfamily Corydalinae) possess spectacularly large, curved mandibles of largely unknown purpose; certainly they do not seem to use them for biting.

Mantisfly Mantispa styriaca, a raptorial lacewing, copyright Gilles San Martin.


The largest of the three orders, by a considerable margin, is the Neuroptera with over 5700 known species. Needless to say, this level of species diversity is associated with a high diversity of appearances and lifestyles, too many to cover adequately here. The larvae of two families of Neuroptera, the Nevrorthidae and Sisyridae, are aquatic and there has been a long-running debate whether this aquatic habit is an ancestral feature of the order shared with the Megaloptera (Nevrorthidae larvae are generalist predators, Sisyridae are specialised feeders on freshwater sponges and bryozoans). However, recent phylogenetic studies (e.g. Vasilikopoulos et al. 2020) do not agree with earlier hypotheses that the Nevrorthidae represent the sister taxon of the remaining Neuroptera. Instead, Nevrorthidae and Sisyridae may form a clade with the Osmylidae, a family whose larvae are not aquatic but often inhabit damp stream banks. The aquatic Neuroptera probably entered the water independently of the alderflies. The current favourites for the sister clade of other neuropterans are the dustywings of the Coniopterygidae, a group of small neuropterans with reduced wing venation that have historically been difficult to place owing to their derived features.

An unidentified dustywing, Coniopterygidae, copyright Katja Schulz.


A fourth order has often been associated with the Neuropterida, the extinct Glosselytrodea. Glosselytrodeans are small insects known from the Late Permian to the Jurassic, characterised by wings bearing dense cross-veins of which the fore pair would have had a leathery appearance in life (not dissimilar in texture to the fore wings of grasshoppers and other Orthoptera). Other than the wings, the features of glosselytrodeans are poorly known: they seem to have been hypognathous (i.e. had the head directed downwards) with slender legs (Grimaldi & Engel 2005). Connections to Neuropterida are based on features of the wing venation but cannot be considered strongly supported. Other authors have regarded them as of uncertain position within the broader holometabolous clade, or even as more closely related to the Orthoptera than any Holometabola. Unless more complete remains should come to light, it seems likely that the question will remain open.

REFERENCES

Aspöck, H., & U. Aspöck. 1991. Raphidioptera (snake-flies, camelneck-flies). In: CSIRO. The Insects of Australia: A textbook for students and research workers 2nd ed. vol. 1 pp. 521–524. Melbourne University Press.

Engel, M. S., S. L. Winterton & L. C. V. Breitkreuz. 2018. Phylogeny and evolution of Neuropterida: where have wings of lace taken us? Annual Review of Entomology 63: 531–551.

Grimaldi, D., & M. S. Engel. 2005. Evolution of the Insects. Cambridge University Press: New York.

Vasilikopoulos, A., B. Misof, K. Meusemann, D. Lieberz, T. Flouri, R. G. Beutel, O. Niehuis, T. Wappler, J. Rust, R. S. Peters, A. Donath, L. Podsiadlowski, C. Mayer, D. Bartel, A. Böhm, S. Liu, P. Kapli, C. Greve, J. E. Jepson, X. Liu, X. Zhou, H. Aspöck & U. Aspöck. 2020. An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evolutionary Biology 20: 64.

Dealing with a Clingy Male

Diving beetles of the family Dytiscidae are a distinctive component of the freshwater environment in most regions of the world. They have an oval, streamlined body form and powerful hind legs, usually with fringes of stiff setae, that are ill-suited for movement on land but make them adept swimmers. They are also almost always capable fliers, allowing them to find their way to water bodies of any size from large lakes to small, temporary pools. Both adults and larvae are active hunters, preying on other aquatic arthropods or even small vertebrates. Most diving beetles are fairly dull in coloration but exceptions are found among members of the tribe Aciliini.

Sunburst diving beetle Thermonectus marmoratus, from Insectarium de Montréal, René Limoges.


Members of the Aciliini are moderately sized diving beetles, generally between one or two centimetres in length. Dorsally they have a yellow to red base coloration with contrasting dark markings. The hind legs are robust with the hind tibia short and broad. Males have the base of the tarsus of the front legs broadened into a round palette with setae on the underside modified into sucking discs, used to hang onto the females when mating; this discs may be present on the tarsus of the mid pair of legs as well. They are strong swimmers, often venturing into the open waters of lakes and pools, and contrast with other diving beetles in that they may be found in pools lacking submerged vegetation (Roughley & Larson 2001; Bergsten & Miller 2006). Larvae have a distinctive arched body shape with a small head (Bukontaite et al. 2014), kind of shrimp-like, and also tend to be more pelagic than the larvae of other diving beetles. Females have gonocoxae (the appendages at the end of the abdomen that function as the ovipositor) that are relatively long with a broadened, spoon-like ending (Miller 2001); these are used to insert eggs into damp moss or under loose bark of vegetation lying just above the waterline. There is usually just one generation per year and adults in cold regions overwinter in larger water bodies that remain unfrozen.

Alternate morphs of female Graphoderus zonatus with granular (left) and smooth elytra, from Holmgren et al. (2016).


Perhaps the most intriguing aspect of aciliin diving beetles regards their sexual dimorphism. As noted above, males have a set of suckers on the fore legs for hanging onto females when mating. However, females of some species have sculpted elytra rather than the smooth elytra of males, such as a granular surface in Graphoderus species or long, setose sulci in female Acilius. The uneven surface produced by these features presumably functions to reduce the efficacy of the males' suckers, allowing the females more control when selecting a mate. That such a conflict exists is supported by the observation that the more developed the males' sucker arrays in a population, the more likely the females are to have repellent sculpturing. Males of some diving beetle species have been observed grabbing at any female they encounter, followed by the female swimming rapidly and erratically in an attempt to shake the male off or knock him off against the substrate or objects in the water (Miller 2003). Where this becomes really interesting is that some species have dimorphic females with some females in the population having sculpted elytra whereas others are smooth. What could be the reason for such variation? The presence of both forms in the population suggests that neither has a complete advantage over the other. It may be that smooth-backed females trade reduced defenses for improved swimming ability. Alternatively, a defensive female may be able to ensure that only the strongest and most resilient males can mate with her, but runs the risk of not mating at all if she never encounters a male who can overcome her defenses. A less defensive female may be more vulnerable to any male she encounters but at least she's bound to be fertilised at some point.

REFERENCES

Bergsten, J., & K. B. Miller. 2006. Taxonomic revision of the Holarctic diving beetle genus Acilius Leach (Coleoptera: Dytiscidae). Systematic Entomology 31: 145–197.

Bukontaite, R., K. B. Miller & J. Bergsten. 2014. The utility of CAD in recovering Gondwanan vicariance events and the evolutionary history of Aciliini (Coleoptera: Dytiscidae). BMC Evolutionary Biology 14: 5.

Holmgren, S., R. Angus, F. Jia, Z. Chen & J. Bergsten. 2016. Resolving the taxonomic conundrum in Graphoderus of the east Palearctic with a key to all species (Coleoptera, Dytiscidae). ZooKeys 574: 113–142.

Miller, K. B. 2003. The phylogeny of diving beetles (Coleoptera: Dytiscidae) and the evolution of sexual conflict. Biological Journal of the Linnean Society 79: 359–388.

Roughley, R. E., & D. J. Larson. 2001. Dytiscidae Leach, 1815. In: Arnett, R. H., Jr & M. C. Thomas (eds) American Beetles vol. 1. Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia pp. 156–186. CRC Press: Boca Raton.

The Barrington Tops Stag Beetle

The stag beetles of the Lucanidae are among the most dramatic of all beetles. They are large, glossy, and the adult males often have greatly enlarged mandibles that are used in conflict with other males. As larvae, lucanids are found feeding on rotting wood; adults may feed on nectar and are largely nocturnal. Australia is home to its share of lucanid diversity though the need for suitable food for larvae means that they are mostly restricted to damper regions of the country. As a result, many Australian stag beetles have limited ranges, rendering them vulnerable if not (in this time of rising temperatures and reduced rainfalls) actively endangered. One such species is the Barrington stag beetle Lissapterus tetrops.

Female (left) and major male Lissapterus tetrops, from Coleptera7777.


The Barrington Tops is a mountain range forming part of the Great Dividing Range in New South Wales, direct north from Newcastle. The Barrington stag beetle was described from this range in 1916 by Arthur Lea, one of Australia's most prolific coleopterologists, and is restricted to rain forests at the upper heights of the range. Lissapterus is an endemic Australian genus of flightless stag beetles distinguished from other members of the family by the shape of the antennae. The terminal club that is usually characteristic of the antennae of stag beetles is less defined in Lissapterus with the last few segments of the short antennae being little larger than the rest. Like most other species in the genus, L. tetrops is almost entirely black, only becoming slightly reddish on the legs and antennae. It grows about an inch in length, males and females being not that dissimilar in size. Lissapterus tetrops differs from other species in the genus in lacking foveae on the pronotum and (mostly) on the head, being relatively sparsely punctate dorsally, and having the eye completely divided by a canthus. Major males have long curved mandibles with a pair of teeth internally near the midpoint, placed one above the other. Minor males and females have much smaller, more ordinary looking mandibles.

The natural history of this species is little known but it presumably resembles that of other species in the genus. Adults are found under rotting logs partially buried in the forest floor that provide food for the larvae. Adults may live for a long time, potentially up to about a year, though it is unclear what exactly they feed on. Other species of Lissapterus are mostly found in disjunct locations up and down the Great Dividing Range, their populations presumably becoming separated as the warming and drying of Australia's climate as it moved northwards forced them out of the lowlands. As the climate continues to become warmer and drier, these beetles may find themselves having to retreat higher and higher, and eventually they may find themselves with no further to go.

REFERENCE

Lea, A. M. 1916. Notes on some miscellaneous Coleoptera, with descriptions of new species. Part II. Transactions of the Royal Society of South Australia 40: 272–436, pls 32–39.

Colpochila: The Chafing of a Mega-genus

Just a few weeks ago, I discussed the melolonthines, a hyperdiverse group of beetles including the chafers that have historically presented something of a taxonomic challenge. In the comments on that post, Adam Yates brought up one aspect of the difficulties presented by this group that I hadn't gotten around to discussing. This is the presence among melolonthines of a number of what may be called 'mega-genera', large genera containing literally hundreds of species that defy attempts to break them down into more manageable units. So on that note, it's only appropriate that I move on to an example of one of these mega-genera, Colpochila.

Colpochila obesa, from Insects of Tasmania.


Colpochila is an Australian genus of melolonthines belonging to a group currently recognised as the tribe Liparetrini (Britton 1986) though readers of the earlier post may recall that relationships between Australian melolonthines and taxa elsewhere in the world remains something of an open question. Liparetrins are, on the whole, a fairly generalised group: characters of the group include a lack of metallic coloration, a labrum which sits underneath and is not fused to the clypeus, simple claws, and relatively broad hind tibiae that end in a pair of widely separated spurs that are placed one above and one below so that the tarsus when moved from side to side can move between the spurs. The two largest genera in the tribe, by a significant margin, are Colpochila and Liparetrus. Somewhere in the region of 130 species are currently recognised in Colpochila whereas Liparetrus is even more diverse. However, both genera were referred to by Britton (1986) as 'polythetic': that is, both represent assemblages of species that, while clearly connected to each other overall, are difficult to characterise from a diagnostic perspective. Species of the genus possess enough features in common that we can readily recognise them as related but it is difficult to drill down on any individual feature or set of features that is shared between all species without exception. Similarly, while I can say from experience that it is generally easy to tell at a glance whether a given species is a Colpochila or a Liparetrus, it is a lot harder to actually define what separates the two genera. The most obvious distinction is size: Colpochila species are relatively large chafers, over a centimetre in length, whereas Liparetrus are smaller. Other features that each separate most Colpochila species from most (though not all) Liparetrus are circular eyes (most Liparetrus have eyes with flattened edges in back so the eye is closer to semi-circular), antennae with more segments in the terminal club, longer elytra that leave less of the end of the abdomen exposed, and hind coxae without the translucent margins found in many Liparetrus.

The lifestyles of Colpochila species are still not very well known. As with other melolonthines, most of the life is spent underground with mature adults only emerging very briefly to breed. The active adults fly at night and may be attracted to lights; it seems unclear whether they feed at maturity. This genus is mostly found in drier habitats such as open woodland, grasslands or semi-desert (mind you, this is Australia we're talking about; drier habitats are 90% of what's going). Of the known species, over half are found in Western Australia.

A second Colpochila species, from Friends of Queens Park Bushland.


So why are Colpochila and other melolonthine mega-genera so diverse? It should be noted that straight geographical and/or ecological divergence does not appear to be the reason: not only is it possible to find multiple species of a single genus in one location but one may even collect very similar species together. It might be that the diversity of the mega-genera is artefactual, a reflection of the failure of taxonomists to properly identify relationships: any study that wanted to explain their diversity would have to study their phylogenetic relationships with related smaller genera to confirm their evolutionary coherence and/or age of divergence. However, if the current generic classification of melolonthines reflects a real evolutionary pattern, a potential explanation was proposed by Britton (1986). Adult melolonthines do not emerge immediately upon maturing but remain dormant underground awaiting a suitable environmental signal such as rainfall. However, rainfall in the arid zone at any one time is often uneven. Dormant beetles at one spot may feel the urge to emerge while others nearby may be left to wait for the next shower. The first wave will have died off before the second wave emerges, and their offspring will not yet be mature. As a result, sub-populations in a single region may become temporally staggered allowing the possibility of divergence via genetic drift. Eventually, their emergence times may drift back into sync but by then they may no longer be able to breed successfully. Could this be the reason why so many species may be found in a single location or may other factors be more significant?

REFERENCE

Britton, E. B. 1986. A revision of the Australian chafers (Coleoptera: Scarabaeidae: Melolonthinae) vol. 4. Tribe Liparetrini: genus Colpochila. Australian Journal of Zoology, Supplementary Series 118: 1–135.

The Melolonthinae: Chafers and June Bugs

Within the bewildering array that is beetle diversity, one of the more readily recognisable groups is the Scarabaeoidea, the assemblage that includes dung beetles (which, as it happens, are what I currently spend most of my days looking at) and related forms. Members of this group are easily distinguished from other beetles by their distinctive antennae, ending in an asymmetrical club with segments extending to one side like a set of fingers. Several families, many of them further subdivided into subfamilies, are currently recognised within the scarabaeoids. One of the most commonly encountered scarabaeoid subgroups is the subfamily Melolonthinae, commonly known as the chafers.

Green scarab beetles Diphucephala sp., a common genus of day-flying melolonthines here in Australia, copyright Boobook48.


Somewhere in the region of eleven thousand species around the world have been assigned to this grouping; as always, doubtless many more could be recognised by those who take the time. Melolonthinae is generally recognised as a subfamily of the family Scarabaeidae, sharing with other scarabaeids features such an antennal club in which the segments are relatively narrow and can be smoothly pressed against each other, and an exposed pygidium (the last dorsal plate on the abdomen, forming what you might think of as the 'butt plate'). Some authors have recognised melolonthines as a distinct family but this is the less commonly utilised option. Melolonthines belong to a group of mostly plant-feeding subfamilies in which the row of abdominal spiracles bends downwards towards the rear so at least the last pair remains visible when the elytra are closed. Within this cluster, melolonthines tend to be characterised more by lacking the features of the other subfamilies than by distinctive features of their own (more on that in a moment) but general features include mandibles that are not visible when looking down on the top of the head, fore coxae that do not protrude much ventrally, equal claws on each leg (at least on the mid and hind legs) and only one visible spiracle when the elytra are closed. The labrum (the piece at the front of the mouthparts that might be thought of as the insect's top lip) is usually hardened and may be more or less fused with the clypeus (the lower- or foremost section [depending how you look at it] of the front of the head capsule). Many melolonthines are noticeably hairy and/or dull in comparison with other scarabaeoids but others may be shiny and/or metallic in coloration.

Sugarcane white grub beetle Lepidiota stigma, copyright Bernard Dupont.


For the most part, melolonthines are plant-feeders at both larval and adult stages of the life cycle (Lawrence & Britton 1991). The greater part of the active life cycle is taken up by the larval stage which may last for many months (Britton 1957). Larvae mostly live underground, feeding on plant roots and humus. A number of species have made themselves known as significant pests in this manner because of the damage they may inflict on pastures or agricultural crops (the grass grub Costelytra zealandica comes immediately to mind as a good example of this in my native New Zealand). Pupation also occurs underground in subterranean cells and mature adults may remain dormant in these cells for some months waiting for conditions to be just right for emergence. Once they do emerge from the ground, however, the adult life span is quite brief, only lasting a few weeks or even days. Because of this brief emergence, and because their habit of waiting for specific environmental cues means that large numbers may appear seemingly all at once, many species have been awarded vernacular names that reflect their seasonality such as June bug (in the Northern Hemisphere) or Christmas beetle (in the Southern). Some species will feed on foliage as adults, some may visit flowers for pollen and nectar, other particularly short-lived species will not feed as adults at all. The majority of adult melolonthines are active at dusk or night, spending the days sheltered in secluded locations, but a number of flower-feeding species are active by day (Britton 1957).

The infamous grass grub Costelytra zealandica, illustrated by Desmond Helmore.


The classification of melolonthines can charitably be described as an absolute mess. As noted above, we can confidently say that they belong to a clade with other subfamilies of plant-feeding scarabaeids (the Cetoniinae, Rutelinae and Dynastinae) but the features setting them apart from these other subfamilies are likely to be primitive for the group. As such, it comes as little surprise that phylogenetic studies have failed to establish the Melolonthinae as monophyletic (e.g. Eberle et al. 2018; Woolley 2016). However, it seems that no-one thinks that an adequately expansive study that would allow them to be appropriately divvied up has yet been done. Matters are not helped by the absence of a well-established internal classification for melolonthines. Various distinct subgroups can be recognised and between twenty or thirty tribes have been recognised around the world. But the relationships between these tribes remain uncertain, as does the tribal position of many genera. Much of the revisionary work that has been done has been conducted at a regional level only. Thus, for instance, the tribal classification of Australian melolonthines established by Britton (1957) applies only to Australian species and the tribal distinctions Britton recognised may end up falling apart if one attempted to apply them to species from elsewhere. Not that the authors should be criticised for this situation: after all, when one is dealing with over 11,000 species, things rapidly tend to become unmanageable.

REFERENCES

Britton, E. B. 1957. A Revision of the Australian Chafers (Coleoptera: Scarabaeidae: Melolonthinae) vol. 1. British Museum (Natural History): London.

Eberle, J., G. Sabatinelli, D. Cillo, E. Bazzatto, P. Šípek, R. Sehnal, A. Bezděk, D. Král & D. Ahrens. 2018. A molecular phylogeny of chafers revisits the polyphyly of Tanyproctini (Scarabaeidae, Melolonthinae). Zoologica Scripta 48: 349–358.

Lawrence, J. F., & E. B. Britton. 1991. Coleoptera. In: CSIRO. The Insects of Australia: a textbook for students and research workers 2nd ed. vol. 2 pp. 543–683. Melbourne University Press.

Woolley, C. 2016. The first scarabaeid beetle (Coleoptera, Scarabaeidae, Melolonthinae) described from the Mesozoic (Late-Cretaceous) of Africa. African Invertebrates 57 (1): 53–66.

Morion Revisited

In an earlier post, I introduced you to the carabid beetle genus Morion, currently recognised as including about forty species from tropical and subtropical regions around the world. In that post, I mentioned how Will (2003) had questioned the monophyly of this genus, owing to its lack of derived features in comparison with closely related genera. In this post, I'll take the opportunity to dive a little further into ways the genus may be divided.

Just to remind you what we're looking at: Morion monilicornis, copyright Robert Webster.


As noted by Will (2003), many authors have recognised two subgenera within Morion, Morion sensu stricto and Neomorion. These subgenera were first established by Jeannel (1948) who identified a distinction between species he examined from the Old World (Africa and Asia) and the Americas. The Old World species, to which Jeannel gave the name Neomorion, had a number of setae along the rear margin of the last ventrite of the abdomen. In males, the basal segment of the fore tarsus had the inner apex drawn out into a tooth. The aedeagus bears a large dorsoapical orifice; in Old World Morion examined by Jeannel, this orifice was covered over by a large bilobed lamella. In the New World species of Morion sensu stricto, in contrast, the rear margin of the last ventrite bore only two setae, and males lacked a medioapical tooth on the basal fore tarsomere. The opening of the aedeagus lacked a covering lamella. In his key to Morion and related genera, Will (2003) referred only to the state of the male fore tarsus as distinguishing the subgenera. It may be that this indicates that the significance of the other characters described by Jeannel had been subject to question, but I suspect that they may have omitted by Will because their state in a number of Morion species remains unknown.

Aedeagi of Morion in lateral and dorsal view from Jeannel (1948). On the left is an Old World species (Morion orientale), on the right a South American species (M. georgiae).


A particular notable lacuna in Jeannel's brief survey of Morion was that he didn't look at any Australian species. In his description of M. crassipes*, a species found in the vicinity of Cairns in Queensland, Sloane (1904) noted that the male fore tarsi differed from those of other Australian species in having the "basal joints rounded and not produced at inner apical angle", implying that most Australian Morion have tarsi resembling those of the New World species. Moore (1965), in a review of Australian genera of Pterostichinae, describes Morion as having an aedeagus with an orifice on the dorsum, with no mention of a covering lamella, again also suggesting a resemblance to New World rather than Old World species (unfortunately, Moore did not specify exactly which species his description of the genitalia was based on). Moore (1965) also noted that Australian species were distinctive among Morion in having a pronotum with more than the two setae along each lateral margin found in species from elsewhere. One species which is found in New Guinea and northern Australia, M. longipennis, does have only two pairs of marginal setae on the pronotum, and Darlington (1962) suggested that it was probably more closely related to Asian species than to other Australian Morion. The aforementioned M. crassipes differs from other Australian species in a number of significant features, including large size (it grows to a full inch in length) and modified legs, and Sloane (1904) did briefly wonder whether it should even be regarded as a Morion, but it does share the plurisetose pronotal margins. I should note that I've found no reference to the pilosity of the last ventrite in any Australian species.

*Under the name 'Morio crassipes'; confusion about whether this genus should be called Morion or Morio lingered for a long time in the early 20th century.

So overall, there is the suggestion of three distinct groups within Morion, for the Old World, American, and Australian species, with the last two more similar to each other than to the first. The New World species of Morion are more diverse in South America than in North America, and one might be tempted to line up the relationship between the three groups with the division of Gondwana. The Old World species group may have diverged first with the separation of Africa and/or India, followed by the South American and Australian lineages diverging as their own continents became isolated. The South American species group may have spread into North America with the formation of the Central American land bridge, and the increased proximity of Australasia to Asia may have allowed members of the Old World group such as M. longipennis to invade from the northwest. However, I've based this scenario on some pretty weak assumptions based on very incomplete data, and it would require a more detailed investigation before we could say if there's any merit to it.

REFERENCES

Darlington, P. J., Jr. 1962. The carabid beetles of New Guinea. Part I. Cicindelinae, Carabinae, Harpalinae through Pterostichini. Bulletin of the Museum of Comparative Zoology 126 (3): 319–564, 4 pls.

Jeannel, R. 1948. Faune de l'Empire Français. X. Coléoptères Carabiques de la Région Malgache (deuxième partie). Office de la Recherche Scientifique Coloniale: Paris.

Moore, B. P. 1965. Studies on Australian Carabidae (Coleoptera). 4.—The Pterostichinae. Transactions of the Royal Entomological Society of London 117 (1): 1–32.

Sloane, T. G. 1904. Studies in Australian entomology. No. XIV. New species of geodephagous Coleoptera from tropical Australia. Cicindelidae (3), and Carabidae (5) [Platysmatini, Morioni, Perigonini, Masoreini, and Physocrotaphini]. Proceedings of the Linnean Society of New South Wales 29 (3): 527–538.

Will, K. W. 2003. Review and cladistic analysis of the generic-level taxa of Morionini Brullé (Coleoptera: Carabidae). Pan-Pacific Entomologist 79 (3–4): 212–229.

The Mirines

Every profession has its quirks, tricks of the trade that are difficult to learn and appreciate except through direct experience. One quirk of entomology is that specimens of each distinct type of insect will have their own nuances for the best method to preserve and present them. And there are some particular types of insect that can be particularly challenging in that regard. Which is a roundabout way of saying: I am not a great fan of mirids.

Green mirid Creontiades dilutus, copyright CSIRO.


Mirids are the largest recognised family of the true bugs in the Heteroptera, with over 11,000 species known worldwide and presumably many more remaining undescribed. They can be distinguished from most (though not, it should be stressed, all) other bug families by the presence of the cuneus, a distinct cross-fold near the outer tip of the hemelytron (the toughened basal part of the fore wing). Most mirids can be further recognised by the absence of ocelli. They are mostly smaller bugs, generally somewhat soft-bodied, and mostly plant feeders though there are some notable exceptions. They also (and this is the reason why they have sometimes been the object of my animus in the past) have a tendency to be what I can only describe as weirdly flimsy. Most insect specimens, at least while stil fresh and relaxed, hold together reasonably well when subject to basic handling. Mirids, on the other hand, will throw off legs if you so much as look at them too hard.

An ant-mimicking mirid, Dacerla inflata, copyright Judy Gallagher.


Mirids are divided between several subfamilies, with the type subfamily Mirinae including well over 4000 species (Kim & Jung 2019). Mirines tend to be relatively large compared to other mirids (up to a bit over half a centimetre in length) and are characterised by features of the genitalia, together with a pair of lamellate, divergent parempodia (fleshy structures that may help in gripping onto things) at the end of the legs between the claws. Other notable features (shared with the closely related Deraeocorinae) include a deeply punctate pronotum, and a relatively long beak that extends beyond the mid coxae at rest. Several species of Mirinae are notable pests. The green mirid Creontiades dilutus is one of the more significant bug pests of crops in Australia, attacking a wide range of hosts including cotton, stone fruit, potatoes, legumes and many more (Malipatil & Cassis 1997). It generally feeds from growing points, killing new buds and inhibiting the production of flowers and new growth. Other polyphagous pests causing similar damage include the tarnished plant bugs of the genus Lygus, whose vernacular name is somewhat self-explanatory, and the alfalfa bug Adelphocoris lineolatus.

Tarnished plant bug Lygus pratensis, copyright Hectonichus.


Six tribes have been recognised within the Mirinae, distinguished by their overall habitus. The Mirini, the largest tribe, have a more or less ovoid body shape with a distinct, raised pronotal collar and opaque hemelytra. The Hyalopeplini have a similar body shape to Mirini but transparent hemelytra. The Restheniini have a reduced evaporative area on the abdomen. The Stenodemini and Mecistoscelini are long and slender with long appendages, with the head directed forward in the Stenodemini. The Herdoniini are ant mimics, presumably for defence from predators. The appearance of an ant waist is achieved by a narrowing of the mirid's own body and wings, and/or an appropriately placed white triangular marking across the hemelytron. Despite the superficial distinctiveness of the tribes, however, a phylogenetic study of the Mirinae by Kim & Jung (2019) found at least two of them to be paraphyletic, with Mecistoscelini being nested within Stenodemini, and Hyalopeplini and Restheniini within Mirini. The affinities of the Herdoniini, unsampled by Kim & Jung, remain to be established.

REFERENCES

Kim, J., & S. Jung. 2019. Phylogeny of the plant bug subfamily Mirinae (Hemiptera: Heteroptera: Cimicomorpha: Miridae) based on total evidence analysis. Systematic Entomology 44: 686–698.

Malipatil, M. B., & G. Cassis. 1997. Taxonomic review of Creontiades Distant in Australia (Hemiptera: Miridae: Mirinae). Australian Journal of Entomology 36: 1–13.

The Ant-like Beetles

As I've commented before, the world is home to an overwhelming diversity of small brown beetles, most of them (for me, at least) inordinately difficult to distinguish. One group of tiny beetles that is quite recognisable, though, is the ant-like beetles of the genus Anthicus.

Anthicus cervinus, copyright Robert Webster.


Over a hundred species around the world have been attributed to this genus. Few of them grow more than a few millimetres in length. They are elongate with the elytra more or less rounded and often covered in short hair. The legs are relatively long. The prothorax is globular and generally narrower towards the base. The head is inclined and carried on a narrow neck (Ferté-Sénectère 1848). Many species have the elytra contrastingly patterned with bands or spots. As the vernacular name indicates, the overall appearance is reminiscent of a small ant though I'm not sure if this indicates a protective mimicry or is merely coincidence.

Anthicus antherinus, copyright Udo Schmidt.


The natural history of most Anthicus species is poorly known. The greater number of species are saprophages, found in association with rotting vegetation or scavenging on dead insects. One species, Anthicus floralis, is found worldwide as a storage pest, infesting seed and grain stores. One of the larger North American species, A. heroicus, has larvae that attack masses of dobsonfly eggs on midstream boulders (Davidson & Wood 1969). The larvae feed on the eggs from the inside, using them for shelter as well as nutrition, before emerging from the eggs to pupate.

REFERENCES

Davidson, J. A., & F. E. Wood. 1969. Description and biological notes on the larva of Anthicus heroicus Casey (Coleoptera: Anthicidae). Coleopterists Bulletin 23 (1): 5–8.

Ferté-Sénectère, M. F. de la. 1848. Monographie des Anthicus et genres voisins, coléoptères hétéromères de la tribu des trachélides. Sapia: Paris.