Field of Science

Showing posts with label Psocodea. Show all posts
Showing posts with label Psocodea. Show all posts

Booklice: The Cutest of Pests

Humans have a tendency to think of 'nature' and the 'environment' as something distinct from our own society. Environments unmodified by humans are seen as 'natural' whereas structures created by human activity, such as buildings, are not 'natural' and thought to be somehow outside the 'environment'. As such, people often react strongly to the idea of things associated with the 'environment', such as non-human wildlife, encroaching on their homes. But of course, human houses are as much an environment of their own as any other of the world's habitats, and many animals find them to be places where they can thrive. Among the animals that most regularly share our houses with us are booklice of the genus Liposcelis.

Liposcelis bostrychophila, copyright Andreas Eichler.


Representatives of Liposcelis can be found almost anywhere in the world except in the coldest of regions. About 130 species have been described in the genus to date (Yoshizawa & Lienhard 2010) with doubtless more yet to be discovered (by comparison, Broadhead's review of the genus in 1950 recognised only 22 species, with a six-fold increase since then). The family Liposcelididae, to which Liposcelis belongs, differ from other free-living members of the Psocodea (or 'Psocoptera') in their flattened body form, as well as being smaller than most other examples (Liposcelis grow little more than a millimetre in length). In the flattened habitus, they resemble the parasitic true lice of the Phthiraptera, and recent studies have agreed that the liposcelidids represent the closest relatives of true lice (Yoshizawa & Lienhard 2010). Liposcelis species are readily distinguished from other liposcelidids by the shape of the hind legs: an obtuse tubercle on the outer margin of the hind femur gives it a distinctly broad appearance* (indeed, the genus name Liposcelis translates into English as 'fat thigh'). Liposcelis are also distinctive in being invariably wingless; other liposcelidid species typically come in both winged and wingless forms. Though the genus as a whole is easily recognised, distinguishing individual species is often a far more challenging prospect requiring microscopic examination of fine features of the chaetotaxy (arrangement of bristles on the body) and cuticular sculpture. Authors have divided Liposcelis species between a number of diagnostic sections and subgroups based on these and other features but the monophyly or otherwise of these subdivisions is largely unstudied.

*This feature is also shared with a cave-dwelling species from Ascension Island currently placed in its own genus, Troglotroctes ashmoleorum, but it seems more than likely that this species is itself a derived offshoot of Liposcelis.

Liposcelis species can feed on a wide range of organic matter but, like other 'Psocoptera', their primary source of food is probably yeasts and fungal spores (their vernacular name has been attributed to their feeding on yeasts growing on the glue binding books, though I would note that they are also probably more likely to be seen crawling on the light background of a book's page than in other, less closely examined corners of the house). Turner (1994) provided a detailed review of the natural history of one of the most widespread domestic pest species in the genus, L. bostrychophila, and reports that he was able to maintain cultures on "'Weetabix'™, 'Shreddies'™, baby rice, soya granules, sage and onion stuffing mix, skimmed milk powder, 'Oat Krunchies'™, red lentils, and yellow split peas". Other stored foods from which complaints had been received of booklice included "sugar, bread, salt, bay leaves, gelatine powder, poppadoms, custard powder, dried yeast, instant potato, nuts, dried fruit, baby food, sauce mix, dried mushrooms, pasta, coconut, cocoa, milk powder, spices, glace cherries, garlic, baking powder, icecream mix, dried soup, cracked wheat, carob powder, maize meal, wheat germ, jellied sweets and bread crumbs". They have also been found on cured meat and may damage curated insect specimens. As well as obtaining moisture from their food, Liposcelis are also able to extract water directly from the atmosphere owing to the hygroscopic properties of their saliva. A booklouse will hold a drop of saliva inside its mouth, then swallow it when the ball has absorved enough water from the air.

Liposcelis sp. (possibly L. meridionalis?) from southern France, copyright Jessica Joachim.


Female Liposcelis bostrychophila generally reach maturity and begin producing eggs about two weeks after hatching and may produce two or three eggs a day. As each egg is about one-third the size of the adult, this means that a female at peak fecundity is producing her own body mass in eggs in a single day. Most Liposcelis species reproduce sexually but some are parthenogenetic. Domestic L. bostrychophila, for instance, seem to be entirely parthenogenetic with males of the species only known from isolated collections in Hawaii, Arizona and Senegal (Georgiev et al. 2020). Studies on an unnamed species of Liposcelis from Arizona found that sex determination seemed to be facultative, determined by the mother, with no evidence for differentiated sex chromosomes (Hodson et al. 2017). Females seemed to produce more males early in life and more females later. The same studies also established the occurrence of paternal genome elimination in this species, where chromosomes inherited from the father were inactivated in the offspring and not passed on to their own progeny (which raises the question that, if males are effectively a genetic dead end, why would a female produce male offspring at all?) Paternal genome elimination has also been found in the human louse Pediculus humanus, and may be characteristic of the broader clade encompassing these species, but other species remain unstudied. Liposcelis genomes are also remarkable in the occurrence of fragmentation of the mitochondrial genome. Whereas some Liposcelis species have only a single mitochondrial chromosome, as is standard for most other animals, some species have the mitochondrial genome divided between two, three, five or seven chromosomes (Feng et al. 2019). The functional significance, if any, of this feature remains unknown.

Though booklice may be found in houses and stores on the regular, they are mostly only minor pests, only causing distress when reaching large numbers (an exceptional case quoted by Turner, 1994, involved a house in New Jersey at the beginning of the 1900s that became so infested "'that a pinpoint could not have been put down without touching one or more of these bugs"). They are not believed to transmit pathogens, except perhaps incidentally by carrying microbes from one store to another. For the most part, these little beasties are just another part of the wildlife that shares our homes with us, whether we are aware of them or not.

REFERENCES

Feng, S., H. Li, F. Song, Y. Wang, V. Stejskal, W. Cai & Z. Li. 2019. A novel mitochondrial genome fragmentation pattern in Liposcelis brunnea, the type species of the genus Liposcelis (Psocodea: Liposcelididae). International Journal of Biological Macromolecules 132: 1296–1303.

Georgiev, D., A. Ostrovsky & C. Lienhard. 2020. A new species of Liposcelis (Insecta: Psocoptera: Liposcelididae) from Belarus. Ecologica Montenegrina 29: 41–46.

Hodson, C. N., P. T. Hamilton, D. Dilworth, C. J. Nelson, C. I. Curtis & S. J. Perlman. 2017. Paternal genome elimination in Liposcelis booklice (Insecta: Psocodea). Genetics 206: 1091–1100.

Turner, B. D. 1994. Liposcelis bostrychophila (Psocoptera: Liposcelididae), a stored food pest in the UK. International Journal of Pest Management 40 (2): 179–190.

Yoshizawa, K., & C. Lienhard. 2010. In search of the sister group of the true lice: a systematic review of booklice and their relatives, with an updated checklist of Liposcelididae (Insecta: Psocodea). Arthropod Systematics and Phylogeny 68 (2): 181–195.

Mesopsocus unipunctatus: an Intriguing Barklouse

I've maintained before that barklice or Psocoptera/Psocodea are the cutest of all insects, an opinion that I still stand by. Nevertheless, their small size and inoffensive habits mean that they don't get the attention that they deserve.

Female Mesopsocus unipunctatus, copyright Tom Murray.


Mesopsocus unipunctatus is a widespread barklouse species in Europe and North America (and possibly in Asia as well where a lack of records may reflect a lack of people looking). It is a relatively large species as barklice go, growing up to about half a centimetre in length. Mature males are fully winged but females have the wings reduced to rudiments and are flightless. Mesopsocus unipunctatus are found living on the bark of trees, primarily on branches rather than on the trunk, and their diet is predominantly made up of the micro-alga Pleurococcus and fungal spores. They are active in early summer: populations in Yorkshire had the first nymphs hatching during April and numbers of individuals reached a peak in late June to early July. The population survived over winter as eggs, laid in clusters of five to eight and covered with a protective layer of hard faecal matter (Broadhead & Wapshere 1966).

Mesopsocus unipunctatus shares much of its range with a closely related species, M. immunis, and the two are often found in association (Broadhead & Wapshere 1966). Differences between the two are slight: M. immunis tends to be paler in coloration but the two species are best distinguished by features of their terminalia. They both feed on the same diet and are active around the same time of year (conversely, other ecologically similar barklice species found in Yorkshire by Broadhead & Wapshere, 1966, were active later in the summer). So how do the two manage to persist without one excluding the other? As it turns out, they differ in oviposition behaviour. Mesopsocus unipunctatus prefers to lay its eggs right at the tips of tree branches whereas M. immunis mostly lays about 25 to 50 cm back from the tip. Mesopsocus immunis also covers its egg masses with a layer of silk in addition to the layer of faecal matter used by both species. These behaviours mean that M. immunis egg masses are better protected from one of their major threats, a mymarid wasp that parasitises them. However, M. unipunctatus compensates for its higher vulnerability to parasitoids through a greater resistance to cold, meaning that a higher proportion of its unparasitised eggs survive the winter. The greater cold resistance of M. unipunctatus means that it may also be found at altitudes and latitudes beyond the range of M. immunis.

Male Mesopsocus unipunctatus, copyright Ken Schneider.


Another feature of M. unipunctatus worth mentioning is that it shows variation in coloration attributed to industrial melanism. This phenomenon is better known in Lepidoptera: you may have heard of one of the most famous animals supposed to exhibit it, the peppered moth Biston betularia. Individuals of M. unipunctatus in England vary in the degree of dark markings on the abdomen, from some that are almost entirely dark through those with a mottled pattern of dark patches and stripes to some in which the dark markings are restricted to the primary transverse stripe on the fourth abdominal segment. The head and thorax are also darker in some individuals than others though it is notable that not all individuals with darkened abdomens also have darkened heads and thoraces (Popescu et al. 1978). Industrial melanism is so-called because this variation in colour pattern is supposed to be related to industrial pollution. It is supposed that the original paler, broken coloration provided camouflage on lichen-covered bark but selection came to favour darker color patterns as trees became blackened with soot. Studies on melanism in M. unipunctatus did indeed find a correlation between the number of dark individuals in a population and the degree of pollution in the environment (Popescu 1979). However, aviary studies of predation rates on M. unipunctatus individuals released into simulated habitats were a bit more equivocable: survival rates of light-coloured individuals were better among branches taken from rural locations but neither morph was definitely favoured among branches from urban environments. Also, darker individuals exhibited faster growth rates in polluted environments than lighter individuals, perhaps due to better absorption of heat despite sunlight being blocked by smog. Are there more dark-coloured individuals in industrial locations because they die less, or because they live more? Another question I don't know the answer to: has M. unipunctatus also reflected Biston betularia in seeing a drop in melanistic individuals with the reduction of smog levels in England in recent decades?

REFERENCES

Broadhead, E., & A. J. Wapshere. 1966. Mesopsocus population on larch in England—the distribution and dynamics of two closely-related coexisting species of Psocoptera sharing the same food resource. Ecological Monographs 36 (4): 327–388.

Popescu, C. 1979. Natural selection in the industrial melanic psocid Mesopsocus unipunctatus (Müll.) (Insecta: Psocoptera) in northern England. Heredity 42 (2): 133–142.

Popescu, C., E. Broadhead & B. Shorrocks. 1978. Industrial melanism in Mesopsocus unipunctatus (Müll.) (Psocoptera) in northern England. Ecological Entomology 3: 209–219.

Hairy-Winged Barklice

Forewing and fore tibia of Siniamphipsocus fusconervosus, from Mockford (2003). Scale bar for the femur = 0.1 mm.


For my next semi-random post, I drew Siniamphipsocus, a genus of more than twenty species of barklice known from eastern Asia. Most of these species were described by China by the almost ludicrously prolific psocopterologist Li Fasheng who over the course of his career has described close to 1000 psocopteran species—nearly a fifth of the world's barklouse fauna. It should be noted, though, that this productivity has not entirely come without criticism: for instance, in the case of the Siniamphipsocus species, most if not all are known from a single sex with some described from males and others from females (Li 2002).

Siniamphipsocus is a genus of the Amphipsocidae, a family of barklice most easily recognised by their wings which have a double row of setae along each of the veins. Amphipsocids can be relatively large as barklice go: the largest Siniamphipsocus species, S. aureus, has a body length of four millimetres, with the forewings being up to 6.75 millimetres long. Features distinguishing Siniamphipsocus from other amphipsocids include the absence of the brush of hairs present at the base of the hind wing in many other species, the absence of a spur vein in the rear of the forewing pterostigma, and the presence of a row of minute spines along the fore femur (Li 2002). Distinguishing the individual species of the genus requires fine attention to details such the patterns of markings on the face, the proportions of the wing veins, and details of the genitalia.

REFERENCES

Li F. 2002. Psocoptera of China (2 vols). Science Press: Beijing.

Mockford, E. L. 2003. New species and records of Psocoptera from the Kuril Islands. Deutsche Entomologische Zeitschrift 50 (2): 191–230.