0% found this document useful (0 votes)
149 views46 pages

Integration by Parts: F (X) G (X) DX

The document discusses integration by parts. It presents the theorem for integration by parts, which states that the integral of f(x)g(x)dx can be expressed as f(x) integrated g(x)dx minus the integral of the derivative of f(x) multiplied by the integral of g(x)dx. It provides a proof of the theorem. It also presents some notes on extensions of integration by parts and examples of applying integration by parts to specific integrals involving exponential, logarithmic and trigonometric functions.

Uploaded by

Sai
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
149 views46 pages

Integration by Parts: F (X) G (X) DX

The document discusses integration by parts. It presents the theorem for integration by parts, which states that the integral of f(x)g(x)dx can be expressed as f(x) integrated g(x)dx minus the integral of the derivative of f(x) multiplied by the integral of g(x)dx. It provides a proof of the theorem. It also presents some notes on extensions of integration by parts and examples of applying integration by parts to specific integrals involving exponential, logarithmic and trigonometric functions.

Uploaded by

Sai
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 46

www.sakshieducation.

com

INTEGRATION BY PARTS

Theorem: If f(x) and g(x) are two integrable functions then

∫ f (x) ⋅ g(x)dx = f (x) ∫ g(x)dx − ∫ f ′(x)  ∫ g(x)dx  dx .


Proof:
d  d d
f (x) ⋅ ∫ g(x)dx  = f (x)  ∫ g(x)dx  + ∫ g(x)dx ⋅ [ f (x)]
dx   dx   dx

= f (x)g(x) +  ∫ g(x)dx  f ′(x)

∴ ∫ f (x)g(x) + f ′(x) ∫ g(x)dx  dx = f (x) ∫ g(x) dx

⇒ ∫ f (x)g(x)dx + ∫ f ′(x)  ∫ g(x)dx  dx = f (x) ∫ g(x) dx


 

∴ ∫ f (x)g(x)dx = f (x) ∫ g(x) dx − ∫ f ′(x)  ∫ g(x)dx  dx


 

Note 1: If u and v are two functions of x then ∫ u dv = uv − ∫ v du .

Note 2: If u and v are two functions of x; u′, u″, u″′ …… denote the successive derivatives of u and
v1, v2, v3, v4, v5 … the successive integrals of v then the extension of integration by pairs is

∫ uvdx = uv1 − u′v2 + u′′v3 − u′′′v4 + ... .


Note 3: In integration by parts, the first function will be taken as the following order.
Inverse functions, Logarithmic functions, Algebraic functions, Trigonometric functions and
Exponential functions. (To remember this a phrase ILATE).

eax
∫ e cos bx dx = (a cos bx + b sin bx) + c
ax
Theorem:
a 2 + b2

Proof: Let I = ∫ eax cos bx dx = cos bx ∫ eax dx − ∫ d(cos bx)∫ eax dx  dx

eax eax
= cos bx − ∫ (− b sin bx) dx
a a
eax b
= cos bx + ∫ eax sin bx dx
a a

www.sakshieducation.com
www.sakshieducation.com

eax b eax eax 


= cos bx + sin bx − ∫ b cos bx dx 
a a a a 

eax b b2
= cos bx + 2 eax sin bx − 2 I
a a a

 b 2  1 ax
⇒ I 1 + 2  = 2 e [ a cos bx + b sin bx ]
 a  a
 a 2 + b 2  1 ax
⇒ I 2  = 2 e [ a cos bx + b sin bx ]
 a  a

eax
∴I = 2 [ a cos bx + b sin bx ] + c
a + b2

eax
Theorem: ∫ eax sin bx dx = (a sin bx − b cos bx)
a 2 + b2

Proof : Let I = ∫ eax sin bx dx = sin bx ∫ eax dx − ∫ d(sin bx) ∫ eax dx  dx

eax eax
= sin bx − ∫ b cos bx dx
a a
1 b
= eax sin bx − ∫ eax cos bx dx
a a

1 b eax eax 
= eax sin bx −  cos bx − ∫ (−b sin bx) dx 
a a a a 

1 b b2
= eax sin bx − 2 eax cos bx − 2 ∫ eax sin bx dx
a a a
1 ax b ax b2
= e sin bx − 2 e cos bx − 2 I
a a a

 a2  1
⇒ I 1 + 2  = 2 eax [ a sin bx − b cos bx ]
 b  a
 a 2 + b 2  eax
⇒ I 2  = 2 [ a sin bx − b cos bx ]
 b  a

eax
∴I = [ a sin bx − b cos bx ] + c
a 2 + b2

www.sakshieducation.com
www.sakshieducation.com

∫ e [f (x) + f ′(x)] dx = e f (x) + c


x x
Theorem:

Proof:

∫ e [f (x) + f ′(x)] dx = ∫ e f (x)dx + ∫ e f ′(x)dx


x x x

= f (x) ∫ e x dx − ∫ d[f (x)]∫ e x dx  dx + ∫ e x f ′(x)dx


 
= f (x)e x − ∫ f ′(x)e x dx + ∫ e x f ′(x)dx = e x f (x) + c

Note: ∫ e− x [ f (x) − f ′(x)] dx = −e− x f (x) + c

Very Short Answer Questions

Evaluate the following integrals.

 (2n + 1)π 
1. ∫ x sec
2
x dx on I⊂R\ : n is an integer 
 2 

Sol. ∫ x sec 2 x dx = x(tan x) − ∫ tan x dx

= x tan x − log | sec x | +C

 −1 1 
∫e  tan x +  dx , x ∈ R.
x
2.
 1+ x2 

Sol.
1
Let f (x) = tan −1 x so that f ′(x) =
1+ x2


∴ ∫ e x  tan −1 x +

1 
1+ x 2
x −1 x
(
 dx = e tan x + C ∵ ∫ e [ f (x) + f ′(x) ] dx = e ⋅ f (x) + C
x
)
log x
3. ∫ dx on (0, ∞).
x2

log x  1 1 1
Sol. ∫ 2
dx = (log x)  −  + ∫ ⋅ dx
x  x x x

1 1
= − log x − + C
x x

www.sakshieducation.com
www.sakshieducation.com

4. ∫ (log x)
2
dx on (0, ∞).

1
Sol. ∫ (log x) 2 dx = (log x) 2 x − ∫ x ⋅ 2 log x ⋅ dx
x

= x(log x)2 − 2 ∫ log x dx


 1 
= x(log x)2 − 2  x log x − ∫ x dx 
 x 
= x(log x)2 − 2x ⋅ log x + x + c

 π 
5. ∫e
x
(sec x + sec x tan x)dx on I ⊂ R \ (2n + 1) : n ∈ Z 
 2 

Sol. ∫ e x (sec x + sec x tan x)dx = e x ⋅ sec x + C

(∵ ∫ e [f (x) + f ′(x)]dx = e f (x) + C )


x x

∫e
x
6. cos x dx on R.

Sol. I = ∫ e x cos x dx = e x sin x − ∫ sin x ⋅ e x dx

= e x ⋅ sin x + e x ⋅ cos x − ∫ e x ⋅ cos x dx

= e x (sin x + cos x) − I

2I = e x (sin x + cos x)
ex
I= (sin x + cos x) + C
2

∫e (sin x + cos x)dx on R.


x
7.

Sol. ∫ e x (sin x + cos x)dx

f (x) = sin x ⇒ f ′(x) = cos x

∴ ∫ e x (sin x + cos x)dx = e x ⋅ sin x + C

www.sakshieducation.com
www.sakshieducation.com

 1  1 
8. ∫ + x
on   2n −  π,  2n + π n∈Z
2  
(tan x log sec x)e dx
 2 

1
Sol. let f = log | sec x |⇒ f ' = ⋅ sec x ⋅ tan x ⋅
sec x

= tan x

∫ (tan x + log sec x)e


x
(
dx = e x ⋅ log | sec x | + C ∵ ∫ e x [f (x) + f ′(x)]dx = e x f (x) + C )

Short Answer Questions

Evaluate the following integrals.

1. ∫x
n
log x dx on (0, ∞), n is a real number and n ≠ –1.

x n +1 1 1
Sol. ∫ x n log x dx = (log x) − ∫ x n +1 dx
n +1 n +1 x

x n +1 (log x) 1
=
n +1

n +1 ∫ x n dx

x n +1 (log x) x n +1
= − +C
n +1 (n + 1) 2

x n +1
= [(n + 1) log x − 1] + C
(n + 1) 2

∫ log(1 + x
2
2. )dx on R.

Sol. ∫ log(1 + x 2 )dx = ∫ 1.log(1 + x 2 )dx =

1
= log(1 + x 2 ) ⋅ x − ∫ x 2x dx
1 + x2
1 + x2 −1
= x log(1 + x 2 ) − 2 ∫ dx
1+ x2

www.sakshieducation.com
www.sakshieducation.com

dx
= x log(1 + x 2 ) − 2 ∫ dx + 2 ∫
1+ x2
= x log(1 + x 2 ) − 2x + 2 tan −1 x + C

3. ∫ x log x dx on (0, ∞).

Sol. ∫ x log x dx =

2 2 1
= log x ⋅ x 3/ 2 − ∫ x 3/ 2 ⋅ dx
3 3 x

2 3/ 2 2
= x (log x) − ∫ x1/ 2dx
3 3

2 3/ 2 2 x 3/ 2
= x (log x) − +C
3 3 3/ 2

2 3/ 2 4
= x log x − x 3/ 2 + C
3 9

4. ∫e
x
dx on (0, ∞).

Sol. let x = t ⇒ x = t 2 , dx = 2t dt

∫e
x
dx = 2 ∫ t e t dt = 2  te t − ∫ e t dt 
 
= 2(te t − e t ) + C
= 2 xe x
− 2e x
+C

∫x
2
5. cos x dx on R.

Sol. ∫ x 2 cos x dx = x 2 (sin x) − ∫ sin x(2x dx)

= x 2 sin x + 2 ∫ x(− sin x)dx


= x 2 ⋅ sin x + 2[x cos x − ∫ cos x dx]
= x 2 sin x + 2x cos x − 2sin x + c

www.sakshieducation.com
www.sakshieducation.com

∫ x sin
2
6. x dx on R.

1
Sol. ∫ x sin 2 x dx = ∫ x(1 − cos x)dx
2

1
=  ∫ xdx − ∫ x cos 2x dx 
2
1  x 2  sin 2x 1 
=  − x ⋅ − ∫ sin 2x dx 
2  2  2 2 

x2 x 1
= − sin 2x + ∫ sin 2x dx
4 4 4
x2 x 1
= − sin 2x − cos 2x + C
4 4 8

∫ x cos
2
7. x dx on R.

1
Sol. ∫ x cos2 x dx = ∫ x(1 + cos 2x)dx
2

1
=  ∫ x dx + ∫ x cos 2x dx 
2
1  x 2  sin 2x 1 
=  + x − ∫ sin 2x dx 
2  2  2 2 

x2 x 1
= + sin 2x − ∫ sin 2x dx
4 4 4
x2 x 1
= + sin 2x + cos 2x + C
4 4 8

8. ∫ cos x dx on R.

Sol. x = t 2 ⇒ dx = 2t dt

I = 2∫ t ⋅ cos t dt = 2(t sin t − ∫ sin t dt)

= 2(t sin t + cos t) + C


= 2 x sin x + 2 cos x + C

www.sakshieducation.com
www.sakshieducation.com

 π 
9. ∫ x sec
2
2x dx on I ⊂ R \ (2nπ + 1) : n ∈ Z 
 4 

tan 2x 1
Sol. ∫ x sec2 2x dx = x − ∫ tan 2x dx
2 2

tan 2x 1 1
=x − ⋅ log | sec 2x | + C
2 2 2
tan 2x 1
=x − log | sec 2x | + C
2 4

10. ∫ x cot
2
x dx on I ⊂ R \{nπ : n ∈ Z} .

Sol. ∫ x cot 2 x dx = ∫ x(csc 2 x − 1)dx

= ∫ x csc2 x dx − ∫ x dx

x2
= x(− cot x) + ∫ cot x dx −
2
x2
= − x cot x + log | sin x | − +C
2

 π 
11. ∫e
x
(tan x + sec 2 x)dx on I ⊂ R \ (2n + 1) : n ∈ Z 
 2 

Sol. f (x) = tan x ⇒ f ′(x) = sec 2 x dx

I = ∫ e x [ f (x) + f ′(x) ]dx = e x f (x) + C

= e x tan x + C

 1 + x log x 
∫e  dx on (0, ∞).
x
12. 
 x 

 1 + x log x  x 1
Sol. ∫ e x   dx = ∫ e  log x +  dx
 x   x

= e x log x + C

www.sakshieducation.com
www.sakshieducation.com

dx
13. ∫ (x 2 + a 2 )2 ,(a > 0) on R.

Sol: Take substitution x = a tan θ

So that dx = a sec2θ dθ

dx a sec2 θdθ
∴∫ = ∫ (a 2 tan 2 θ + a 2 )2
(x 2 + a 2 ) 2

a sec2 θdθ 1 sec2 θdθ


=∫ = ∫
a 4 (1 + tan 2 θ)2 a 3 sec4 θ

1
= 3 ∫
cos 2 θdθ
a

1  1 + cos 2θ 
= ∫  2  dθ
a3 

1
=  ∫ 1 ⋅ dθ + ∫ cos 2θ dθ 
2a 3 

1  1 
= θ + 2 sin 2θ
2a 3

1  −1  x  1  −1  x   
=  tan   + sin  2 tan     + c
2a 3  a 2   a  

1 x 1   x 
= 3
tan −1   + 3 sin  2 tan −1    + c.
2a  a  4a   a 

14. ∫e
x
log(e2x + 5e x + 6)dx on r.

Sol: e2x + 5ex + 6 = (e x )2 + 5e x + 6

= (e x )2 + 3e x + 2e x + 6
= e x (e x + 3) + 2(e x + 3)
= (e x + 3)(e x + 2)

∫e
x
log(e2x + 5e x + 6)dx

= ∫ e x log[(e x + 2)(e x + 3)]dx

= ∫ e x log(e x + 2)dx + ∫ e x log(e x + 3) dx (∵ log ab = log a + log b)

www.sakshieducation.com
www.sakshieducation.com

Let ex = t then ex dx = dt

∴ ∫ e x log(e2x + 5e x + 6)dx

= ∫ log(t + 2)dt + ∫ log(t + 3)dt

t t
= log(t + 2)t − ∫ dt + log(t + 3) ⋅ t − ∫ dt
t+2 t +3

(using integration by parts on two integrals)

 (t + 2) − 2   (t + 3) − 3 
= t ⋅ log(t + 2) − ∫   dt + t ⋅ log(t + 3) − ∫  dt
 t+2   t +3 

dt dt
= t ⋅ log(t + 2) − ∫ dt + 2 ∫ + t log(t + 3) − ∫ dt + 3∫
t+2 t +3
= t log(t + 2) − t + 2 log(t + 2) + t log(t + 3) − t + 3log(t + 3)
= 2 log | (t + 2) | +3log | (t + 3) | −2t + t[log(t + 2)(t + 3)]

= t[log(t 2 + 5t + 6)] − 2t + 2log | t + 2 | +3log | t + 3 | +c

= ex [log(e2x + 5ex + 6)] − 2e x + 2log | ex + 2 | +3log | ex + 3 | +c.

15. ∫ cos(log x)dx on (0, ∞).

Sol: Let I = ∫ cos(log x)dx = ∫ cos(log x)1 ⋅ dx

Take u = cos(log x) and v = 1 and using integration by parts successively.


1
I = cos(log x)x − ∫ − sin(log x) x ⋅ dx
x

= x cos(log x) + ∫ sin(log x)dx


1
= x cos(log x) + sin(log x) ⋅ x − ∫ cos(log x) ⋅ x ⋅ dx
x
= x cos(log x) + x ⋅ sin(log x) − ∫ cos(log x)dx
= x[cos(log x) + sin(log x)] − 1

∴ 2I = x[cos(log x) + sin(log x)]


x
⇒ I = [cos(log x) + sin(log x)] + c
2

∴ ∫ cos(log x)dx =
x
[cos(log x) + sin(log x)] + c
2
www.sakshieducation.com
www.sakshieducation.com

x+2
16. ∫e
x
dx on I ⊂ R \ {–3}
(x + 3) 2

x+2
Sol. ∫ e x dx
(x + 3) 2

Hint: ∫ e x [ f (x) + f ′(x) ] dx = e x − f (x) + C

 x + 3 − 1 
= ∫ ex  2
dx
 (x + 3) 

 1 (−1)  x 1 
= ∫ ex  +  dx = e  +C
 x + 3 (x + 3)   x +3
2

xe x
17. ∫ (x + 1)2 dx on I ⊂ R \ {–1}

xe x  x + 1 −1 x
Sol. ∫ dx = ∫  (x + 1)2  e dx
(x + 1)2  

 1 1  x
= ∫ − 2
e dx
 x + 1 (x + 1) 
 1  ( −1)  x
= ∫  + 2
e dx
 x + 1  (x + 1) 

Hint: ∫ e x [ f (x) + f ′(x) ] dx = e x − f (x) + C

 1  x ex
=  e + C = x +1 + C
 x +1 

www.sakshieducation.com
www.sakshieducation.com

Long Answer Questions

Evaluate the following integrals.


−1
1. ∫ x tan x dx, x ∈ R

x2 1 2 1
Sol. ∫ x tan −1 x dx = (tan −1 x) − ∫x ⋅ dx
2 2 1+ x2

x 2 (tan −1 x) 1  1 
= − ∫ 1 −  dx
2 2  1+ x2 

x 2 (tan −1 x) 1
= − (x − tan −1 x) + C
2 2

x 2 (tan −1 x) x tan −1 x
= − + +C
2 2 2
(x 2 + 1) x
= tan −1 x − + C
2 2

2. ∫x
2
tan −1 x dx, x ∈ R .

x3 1 3 1
Sol. ∫ x 2 tan −1 x dx = (tan −1 x)
3 3 ∫ 1+ x2
− x dx

x 3 (tan −1 x) 1 x(x 2 + 1) − x
= − ∫ dx
3 3 1 + x2
x 3 (tan −1 x) 1 1 xdx
= − ∫ xdx + ∫
3 3 3 1+ x2

x 3 (tan −1 x) x 2 1
= − + log |1 + x 2 | +C
3 6 6

tan −1 x
3. ∫ x2
dx, x ∈ I ⊂ R \ {0}

tan −1 x 1  1 1 1
Sol. ∫ dx = ∫ tan −1 x = (tan −1
x)  −  + ∫ dx
x2 x2  x x 1+ x2

tan −1 x 1 2x dx
=− + ∫ 2
x 2 x (1 + x 2 )
tan −1 x 1  1 1 
=− + ∫ 2 −  (2x dx)
x 2  x 1+ x2 
www.sakshieducation.com
www.sakshieducation.com

tan −1 x dx 1 2x dx
+∫
x 2 ∫ 1+ x2
= −
x

tan −1 x 1
=− + log | x | − log |1 + x 2 | +C
x 2

−1
4. ∫ x cos x dx, x ∈ (−1,1)

Sol. ∫ x cos −1 x

d 
= cos −1 ∫ x dx − ∫  [cos −1 x]∫ x dx  dx
 dx 

x2 −1 x 2
= cos −1 x − ∫ dx
2 1− x2 2
x2 1 x2
= cos −1 x + ∫ dx
2 2 1− x2

x2 −1 1 1 − x2 −1
= cos x − ∫ dx
2 2 1− x2

x2 1 1 1
= cos −1 x − ∫ 1 − x 2 dx + ∫ dx
2 2 2 1− x2

x2 1 1 1  1
= cos −1 x −  x 1 − x 2 + sin −1 x  + sin −1 x + C
2 2 2 2  2

x2 1 1
= cos −1 x − x 1 − x 2 + sin −1 x + C
2 4 4

5. ∫x
2
sin −1 x dx, x ∈ (−1,1)

Sol. ∫ x 2 sin −1 x dx

x3 1 3  1 
= (sin −1 x)
3 3 ∫  1 − x 2
− x   dx

x 3 −1 1 x[1 − (1 − x 2 )]
= sin x − ∫ dx
3 3 1− x2

www.sakshieducation.com
www.sakshieducation.com

x 3 −1 1 xdx 1
= sin x − ∫ + ∫ x 1 − x 2 dx
3 3 1− x2 3

x 3 −1 1 1 (1 − x 2 )3/ 2
= sin x + 1 − x 2 + +C
3 3 3 (3 / 2)(−2)

x 3 −1 1− x2 1
= sin x + − (1 − x 2 )3/ 2 + C
3 3 9

6. ∫ x log(1 + x)dx, x ∈ (−1, ∞)


Sol. ∫ x log(1 + x)dx

 x2  1 x2
= log(1 + x)   − ∫ dx
 2  2 1+ x
 
x2 1 1 − (1 − x 2 )
= log(1 + x) − ∫ dx
2 2 1+ x

x2 1 dx 1
log(1 + x) − ∫
2 1+ x 2 ∫
= + (1 − x)dx
2

x2 1 1 x2 
= log(1 + x) − log(1 + x) +  x −  + C
2 2 2  2 

(x 2 − 1) x x2
= log(1 + x) + − +C
2 2 4

7. ∫ sin x dx on (0, ∞).

Sol. put x = t 2 ⇒ dx = 2t dt

= 2  t(− cos t) + ∫ cos t dt 

= −2t cos t + 2 sin t

= −2 x cos x + 2 sin x + C

www.sakshieducation.com
www.sakshieducation.com

8. ∫e
ax
sin(bx + c)dx , (a, b, c ∈ R, b ≠ 0) on R.

Sol.

Let I = ∫ eax sin(bx + c)dx

 cos(bx + c)  1
= eax  −  + ∫ cos(bx + c)e a dx
ax
 b  b

eax ⋅ cos(bx + c) a ax
=− + ∫ e cos(bx + c)dx
b b

eax ⋅ cos(bx + c) a  ax bx + c  1
b  b∫
=− +  e ⋅ sin − sin(bx + c)eax ⋅ a ⋅ dx
b b

eax ⋅ cos(bx + c) a ax a2
=− + 2 e sin(bx + c) − 2 I
b b b

 a2  eax a a 2 + b2 eax
1 + 2  I = − cos(bx + c) + 2 eax sin(bx + c) I = [a sin(bx + c) − b(cos(bx + c)]
 b  b b b2 b2

eax
∴I = [a sin(bx + c) − b(cos(bx + c)] + C1
a 2 + b2

9. ∫a
x
cos 2x dx on R(a > 0 and a ≠ 1).

Sol. ∫ a x cos 2x dx

sin 2x 1
= ax − ∫ sin 2x ⋅ a x log a dx
2 2

a x ⋅ sin 2x log a x
2 ∫
= + a (− sin 2x)dx
2

a x sin 2x log a x 2x 1
= + (a ⋅ cos − ∫ cos 2x ⋅ a x log a dx)
2 2 2 2

a x sin 2x a x log a cos 2x (log a)2


= + − I
2 4 4

 (log a)2  a x [2sin 2x + (log a) cos 2x]


1 +  I =
 4  4

4 + (log a) 2 a x [2sin 2x + (cos 2x) log a]


I=
4 4

www.sakshieducation.com
www.sakshieducation.com

2 ⋅ a x ⋅ sin 2x + (a x ⋅ log a) cos 2x


∴I = +c
(log a) 2 + 4

−1  3x − x 
3
 1 1 
10. ∫ tan 
1 − 3x

2 
dx on I ⊂ R \ −
 3
,
3
.

 

Sol. Put x = tan t ⇒ dx = sec2 t dt

−1  3x − x 
3
Then ∫ tan 
  dx
 1 − 3x 
2

 3 tan t − tan 3 t  2
= ∫ tan −1 
 1 − 3 tan 2 t 
sec t dt
 

= ∫ tan −1 (tan 3t) sec 2 t dt = 3∫ t sec 2 t dt

 d  
= 3  t ∫ sec2 t dt − ∫  (t) ∫ sec2 t dt  dt 
  dt  
= 3[t(tan t) − ∫ (1) tan t dt]

= 3(t tan t − log | sec t |) + C

(
= 3 x ⋅ tan −1 x − log 1 + x 2 + C )
 3 
= 3x  tan −1 x − log(1 + x 2 )  + C
 2 
3
= 3x tan −1 (x) − log(1 + x 2 ) + C
2

−1
11. ∫ sinh x dx on R.

Sol. ∫ sinh −1 x dx = ∫ 1.sinh −1 x dx

1
= x.sinh −1 x − ∫ .xdx
1+ x 2

1 2x
= x.sinh −1 x − ∫ dx
= 2 1+ x2
1
= x.sinh −1 x − 2. 1 + x 2 + c
2
= x.sinh −1 x − 1 + x 2 + c

www.sakshieducation.com
www.sakshieducation.com
−1
12. ∫ cosh xdx on [1, ∞].

Sol. ∫ cosh −1 xdx = ∫ 1.cosh −1 xdx

Apply integration of parts.

Ans. x cosh −1 x − x 2 − 1 + C

−1
13. ∫ tanh x dx on (–1, 1).

Sol. ∫ tanh −1 x dx = ∫ 1. tanh −1 x dx

= ∫ 1.tanh −1 x dx
1
= x.tanh −1 x − ∫ xdx
1− x2
1 −2x
= x.tanh −1 x + ∫ dx
2 1− x2
1
(
= x.tanh −1 x + log 1 − x 2 + c
2
)
14. Find ∫ eax cos(bx + c)dx on R where a, b, c are real numbers and b ≠ 0.

Sol. Let A = ∫ eax cos(bx + c)dx

Then from the formula for integration by parts

 sin(bx + c)   sin(bx + c) 
A = eax   − ∫ aeax   dx
 b   b

1 a
= eax sin(bx + c) − ∫ eax sin(bx + c)dx
b b

1 ax a   − cos(bx + c)  ax  cos(bx + c)  
= e sin(bx + c) − eax   − ∫ ae −  dx  + C1
b b  b   b  

1 ax a ax a2
= e sin(bx + c) + 2 e cos(bx + c) − 2 A + C 2
b b b

 a2  a ax 1 ax
1 + 2  A = 2 e cos(bx + c) + e sin(bx + c) + C2
 b  b b

(a 2 + b 2 )A = ae ax cos(bx + c) + beax sin(bx + c) + C3

eax
Hence A = [a cos(bx + c) + b sin(bx + c)] + K
a 2 + b2
www.sakshieducation.com
www.sakshieducation.com

c3
Where k = a constant
a + b2
2

By taking c = 0, we get

eax
∫ e cos bx dx = [a cos bx + b sin bx] + K
ax
a 2 + b2

1− x
15. Evaluate ∫ tan −1 dx on (–1, 1).
1+ x

Sol. Put x = cosθ, θ∈ (0, π)dx = –sin θ dθ

1 − x 1 − cos θ 2 sin 2 θ / 2 θ
= = = tan 2
1 + x 1 + cos θ 2 cos θ / 2
2
2

−1 1− x θ
∫ tan dx = ∫ tan −1 tan 2 ( − sin θ)dθ
1+ x 2

 θ
= − ∫ tan −1  tan  (sin θ)dθ
 2
1
2∫
=− θ⋅ sin θ dθ

1
= − θ(− cos θ) − ∫ (− cos θ)dθ + C
2 

1
= (θ cos θ − sin θ) + C
2

=
1
2 (
x cos −1 x − 1 − x 2 + C )

 1 − sin x 
16. Evaluate ∫ e x   dx on I ⊂ R \ {2nπ
π : n ∈ Z}.
 1 − cos x 

1 − sin x 1 − sin x
Sol. =
1 − cos x 2 sin 2 x / 2

x x x x
1 − 2sin cos 2sin cos
2 2= 1 2 2
= −
2 x 2 x 2 x
2sin 2sin 2sin
2 2 2

1 x x
= csc2 − cot
2 2 2

www.sakshieducation.com
www.sakshieducation.com

 1 − sin x  x1 2 x x
∫e  dx = ∫ e  csc − cot  dx
x

 1 − cos x  2 2 2

x
= ∫ e x [ f (x) + f ′(x)] dx where f (x) = − cot
2

x
= e x f (x) + C = −e x cot +C
2

 2x 
17. Evaluate ∫ tan −1  2 
dx on I ⊂ R \ (–1, 1).
 1− x 

Sol. Let x = tan θ⇒ dx = sec2θ dθ


2x 2 tan θ
= = tan 2θ
1− x 2
1 − tan 2 θ
 2x 
tan −1  2 
= tan −1 (tan 2θ) = 2θ + nπ
 1− x 

Where n = 0 if |x| < 1


= –1 if x > 1
= 1 if x < –1
1
We have dθ = dx and
1+ x2

1+x2 = 1 + tan2θ = sec2θ

 2x 
∴ ∫ tan −1  2 
dx
 1− x 

  2x   1
= ∫  tan −1  2 
(1 + x 2 ) dx
  1− x   1+ x2
= ∫ (2θ + nπ) ∫ sec2 θdθ

= 2 ∫ θ sec2 θdθ + nπ∫ sec2 θdθ + c

( )
= 2 θ tan θ − ∫ tan θdθ + nπ tan θ + c
= 2(θ tan θ + log | cos θ | + nπ tan θ + c

= (2θ + nπ) tan θ + 2log cos θ + c

= (2θ + nπ) tan θ + log cos 2 θ + c


= (2θ + nπ) tan θ + log sec2 θ + c

www.sakshieducation.com
www.sakshieducation.com

 2x 
= x tan −1  2
− log(1 + x 2 ) + c
 1− x 

exp(m sin −1 x)
18. Find ∫x
2
dx on (–1, 1) where m is a real number. (Here for Y ∈ R, exp.(y)
1− x2
stands for ey).
Sol. Let t = sin–1 x, then
1
x = sin t, dt = dx , for x ∈ (–1, 1)
1 − x2

exp(m sin −1 x)
Hence ∫ x 2 dx = ∫ e mt sin 2 tdt
1− x 2

 1 − cos 2t 
= ∫ emt   dt
 2 

1 mt 1
=
2 ∫ e dt − ∫ emt ⋅ cos 2t dt + c
2
…(1)

Case (i): m = 0

exp(m sin −1 x)
From (1) ∫ x 2 dx
1− x 2

1 1
=
2 ∫ dt − ∫ cos 2t dt + C
2
t sin 2t
= − +C
2 4
sin −1 x 1
= − sin(2sin −1 x) + C
2 4

Case (ii):m ≠ 0

exp(m sin −1 x)
From (1) ∫ x 2 dx
1− x 2

1 e mt 1 e mt
= − (m cos 2t + 2 sin 2t) + C1
2 m 2 m2 + 4

e mt 1 1 
= m− 2 (m cos 2t + 2 sin 2t)  + C1
2  m +4 
−1
e m sin x
1 1 
= m− 2 (m cos(2sin −1 x) + 2sin(2 sin −1 x)  + C1
2  m +4 

www.sakshieducation.com
www.sakshieducation.com

Integration of Some Special Types of Functions

px + q d
Type I: If the integral is of the form ∫ ax 2 + bx + c dx then take px + q = A (ax 2 + bx + c) + B .
dx

px + q d
Type II: ∫ dx . Take px + q = A (ax 2 + bx + c) + B .
ax 2 + bx + c dx

d
Type III: ∫ (px + q) ax 2 + bx + c dx . Take px + q = A (ax 2 + bx + c) + B .
dx

1 1
Type IV: ∫ dx . To evaluate this put px + q = .
(px + q) ax 2 + bx + c t

1 1
Type V: ∫ dx . To evaluate this, put x = .
(ax + b) cx + d
2 2 t

px + q ax + b 1
Type VI : ∫
ax + b
dx or ∫ px + q
dx or ∫ (px + q) ax + b dx or ∫
(px + q) ax + b
dx . Put ax + b = t2.

1
Then dx = 2t dt .
a

Integration Of Functions Which Are Rational in sin x and cos x.


dx dx
Type I:If the integral is of the form ∫ a 2 cos2 x + b2 sin 2 x or ∫ a cos2 x + b sin x cos x + c sin 2 x then

multiply both numerator and denominator with sec2 x and take tan x = t.
dx dx dx
Type II: If the integral is of the form ∫ a + b cos x or ∫ a + bsin x or ∫ a cos x + bsin x + c , take

x 1 x 2dt 2 tan x / 2 2t
tan = t ⇒ sec2 dx = dt ⇒ (1 + tan 2 x / 2)dx = 2dt ⇒ dx = . sin x = = ,
2 2 2 1+ t2 1 + tan x / 2 1 + t 2
2

1 − tan 2 x / 2 1 − t 2
cos x = = .
1 + tan 2 x / 2 1 + t 2

www.sakshieducation.com
www.sakshieducation.com

a cos x + b sin x d
Type III :If the integral is of the form ∫ c cos x + d sin x dx , take a cos x + b sin x = A dx (c cos x + d
sin x). By equating the coefficients of cos x, sin x we get the values of A and B. Then the given
integral becomes A log|ccos x + d sin x| + Bx + k.

Very Short Answer Questions

Evaluate the following integrals.


dx
1. ∫
2x − 3x 2 + 1

dx
Sol. ∫
2x − 3x 2 + 1

dx 1 dx
=∫ = ∫
 2x 1 3 2
2  1
2
3 − x2 +  − x −
 3 3    
3  3

 1
x− 
1 −1  3 + C = 1 sin −1  3x − 1  + C
= sin    
3  2  3  2 
 3 

sin θ
2. ∫ dθ
2 − cos 2 θ

sin θ
Sol. ∫ dθ
2 − cos 2 θ

Put cos θ = t ⇒ − sin θ dθ = dt

dt dt
= ∫− = −∫
2 − t2 ( 2) 2 − t 2

 t  −1  cos θ 
= − sin −1   + C = − sin  +C
 2  2 

www.sakshieducation.com
www.sakshieducation.com

cos x
3. ∫ sin 2 x + 4 sin x + 5 dx
cos x
Sol. ∫ dx
sin 2 x + 4 sin x + 5

put sin x = t ⇒ cos xdx = dt

dt dt
=∫ =∫
t 2 + 4t + 5 (t + 2) 2 + 1
= tan −1 (t + 2) + C = tan −1 (sin x + 2) + C

dx
4. ∫ 1 + cos2 x
dx sec 2 dx sec 2 xdx
Sol. ∫ =∫ =∫
1 + cos 2 x sec 2 x + 1 tan 2 x + 2

Let tan x = t ⇒ sec 2 x dx = dt

dt 1  t 
=∫ = tan −1  +C
t + ( 2)
2 2
2  2

1  tan x 
= tan −1  +C
2  2 

dx
5. ∫ 2 sin 2 x + 3cos2 x
dx sec 2 xdx
Sol. ∫ =∫
2 sin 2 x + 3cos 2 x 2 tan 2 x + 3

Let tan x = t ⇒ sec 2 x dx = dt

dt 1 dt
=∫
2∫
=
2t + 3
2
 3
2
t +
2

 2

2  2t 
= tan −1  +C
3  3 
2
2

www.sakshieducation.com
www.sakshieducation.com

1  2 tan x 
= tan −1  +C
2 3  3 
1  2 
= tan −1  tan x  + C
6  3 

1
6. ∫ 1 + tan x dx
1
Sol. ∫ dx
1 + tan x

1 cos x dx 1 2 cos x dx
=∫ dx = ∫ = ∫
1+
sin x sin x + cos x 2 sin x + cos x
cos x

1 (cos x + sin x) + (cos x − sin x)


2∫
= dx
sin x + cos x

1 1 cos x − sin x
=
2 ∫ dx + ∫
2 sin x + cos x
dx

1 1
= x + log | sin x + cos x | +C
2 2

1
7. ∫ 1 − cot x dx
1 1 sin xdx
Sol. ∫ dx = ∫ dx = ∫
1 − cot x 1−
cos x sin x − cos x
sin x

1 (sin x − cos x) + (cos x + sin x)


2∫
= dx
sin x − cos x

1 1 cos x + sin x
=
2 ∫ dx + ∫
2 sin x − cos x
dx

1 1
= x + log | sin x − cos x | +C
2 2

www.sakshieducation.com
www.sakshieducation.com

Short Answer Questions

Evaluate the following integrals.

1. ∫ 1 + 3x − x 2 dx

∫ 1 + 3x − x 2 dx = ∫ 1 − (x 2 − 3x)dx
Sol.
3 9
= ∫ 1 − (x − ) 2 − dx
2 2

2
 13   3
= ∫  −
  x − 
 2   2

 3  3
 x −  1 + 3x − x
2
 x− 
=
2 13
+ sin −1  2 +C
2 8  13 
 
 2 

(2x − 3) 1 + 3x − x 2 13 −1  2x − 3 
= + sin  +C
2 8  13 

9 cos x − sin x
2. ∫ 4sin x + 5cos x dx
9 cos x − sin x
Sol. ∫ dx
4sin x + 5cos x

d
let 9cosx-sinx =A ( 4sin x + 5cos x ) + B ( 4sin x + 5cos x )
dx
9cosx-sinx =A ( 4 cos x − 5sin x ) + B ( 4 sin x + 5 cos x )

Comparing the coefficients of sin and cos , we get


9 = 4A+5B and -5 = -5A+4B

Solving these equations , A =1 and B=1.


∴ 9cosx-sinx =1( 4 cos x − 5sin x ) + 1( 4 sin x + 5cos x )
=1( 4 cos x − 5sin x ) + 1( 4sin x + 5 cos x )

www.sakshieducation.com
www.sakshieducation.com

9 cos x − sin x (4sin x + 5cos x) + (4 cos x − 5sin x)


∫ 4sin x + 5cos x dx = ∫ 4sin x + 5cos x
dx

4cos x − 5sin x
= ∫ dx + ∫ dx
4sin x + 5cos x
= x + log | 4sin x + 5cos x | +C

2cos x + 3sin x
3. ∫ 4 cos x + 5sin x dx
Sol. Let 2 cos x + 3 sin x = A(4 cosx + 5 sin x) + B(–4 sin x + 5 cos x)
Equating the coefficient of sinx and cosx, we get 4A + 5B = 2, 5A – 4B = 3.
A B 1
+5 −2 4 +5
−4 −3 5 −4

A B 1
= =
−15 − 8 −10 + 12 −16 − 25

23 2
A= ,B = −
41 41

2 cos x + 3sin x
∫ 4 cos x + 5sin x dx =
23 2 −4sin x + 5cos x
=
41 ∫ dx − ∫
41 4 cos x + 5sin x
dx

23 2
= x − log | 4 cos x + 5sin x | +C
41 41

dx
4. ∫ 1 + sin x + cos x
dx
Sol. ∫
1 + sin x + cos x

dx
= ∫ x x
 2 tan 1 − tan 2
2 2
1 + +
x
2 x
 1 + tan 1 + tan 2 
 2 2

www.sakshieducation.com
www.sakshieducation.com

x
dx sec2
=∫ 2
x x x
1 + tan 2 + 2 tan + 1 − tan 2
2 2 2

x
sec 2 x 1 x
=∫ 2 put tan = t ⇒ sec2 dx = dt
x 2 2 2
2 + 2 tan
2

dt dt
= 2∫ =∫ log |1 + t | +C
2 + 2t 1+ t

x
= log 1 + tan +C
2

dx
5. ∫ 3x 2 + x + 1
dx dx
Sol. ∫ =∫
3x + x + 1
2  1 1
3 x2 + x + 
 3 3

1 dx 1 dx
= ∫
3  2
1 1 1 3 
= ∫
2 2
+ + − 1   11 


x 
6  3 36 x +  + 
 6  6 

1 1  x + (1/ 6) 
= ⋅ tan −1  +C
3 11  ( 11/ 6) 
 
6

2  6x + 1 
= tan −1  +C
11  11 

dx
6. ∫
5 − 2x 2 + 4x

dx
Sol. ∫
5 − 2x 2 + 4x

5 – 2x2 + 4x

 5  5
= −2  x 2 − 2x −  = −2 (x − 1) 2 − 1 − 
 2  2

www.sakshieducation.com
www.sakshieducation.com

 7 7 
= −2 (x − 1) 2 −  = 2  − (x − 1)2 
 2 2 

1
Now ∫ dx
5 − 2x 2 + 4x

1
=∫ dx
7 
2  − (x − 1) 2 
2 
1 1
=
2 ∫ 2
dx
7
  − (x − 1)
2
2

1 (x − 1)
= sin −1 +C
2 7/2
1 2
= sin −1 (x − 1) + C
2 7

www.sakshieducation.com
www.sakshieducation.com

Long Answer Questions

Evaluate the following integrals.


x +1
1. ∫ dx
x − x +1
2

Sol. take x+1 =A


d 2
dx
( )
x − x +1 + B

x+1 =A ( 2x − 1) + B

Comparing the coefficients of like terms,


2A = 1 and B-A =1
1 3
⇒ A= and b =
2 2

1 3
∴ x+1 = ( 2x − 1) +
2 2

1 3
(2x − 1) +
x +1
∫ dx = ∫ 2 2 dx
x − x +1
2
x − x +1
2

1 (2x − 1)dx 3 dx
=
2 ∫ + ∫
x − x +1 2
2
x − x +1
2

3 dx
2∫
= x2 − x +1 +
2
1  3
2

 x −  + 
 2  2 

 1
3 x− 
= x 2 − x + 1 + sinh −1  2 +C
2  3 
 
 2 

3  2x − 1 
= x 2 − x + 1 + sinh −1  +C
2  3 

www.sakshieducation.com
www.sakshieducation.com

2. ∫ (6x + 5) 6 − 2x 2 + x dx

Sol.

let 6x+5=A
d
dx
( )
6 − 2x 2 + x + B

⇒ 6x + 5 = A(1 – 4x) + B

Equating the coefficients


−3
6 = −4A ⇒ A =
2

Equating the constants


A+B=5
3 13
B = 5 – A = 5+ =
2 2

∫ (6x + 5) 6 − 2x 2 + x dx

3 13
=−
2 ∫ (1 − 4x) 6 − 2x 2 + x dx +
2
6 − 2x 2 + x dx

3 (6 − 2x 2 + x)3/ 2 13 x
=− + 2 ∫ 3 − x 2 + dx
2 3/ 2 2 2

2 2
13 7  1
= −(6 − 2x 2 + x)3/ 2 +
2 ∫   −  x −  dx
4  4

13
= −(6 − 2x 2 + x)3/ 2 +
2
 1 2 x  1
 x −  3− x +  x− 
 4 2 49 −1 
+ sin
4
+C
 2 32 7 
   
 4 

13  (4x − 1) 6 − 2x 2 + x 49 −1  4x − 1  
= −(6 − 2x 2 + x)3/2 +  + sin   + C
2 16 × 2 32  7 
 

13 637  4x − 1 
= −(6 − 2x 2 + x)3/2 + (4x − 1) 6 − 2x 2 + x + sin −1  +C
16 32 2  7 

www.sakshieducation.com
www.sakshieducation.com

dx
3. ∫ 4 + 5sin x
dx dx
Sol. ∫
4 + 5sin x ∫
=
x
2 tan
4+5 2
x
1 + tan 2
2

x x 1
put tan = t ⇒ sec2 ⋅ dx = dt
2 2 2

2dt 2dt
⇒ dx = =
sec2
x 1+ t2
2

dt dt
G.I. = 2 ∫ = 2∫
1+ t 2
4 + 4t 2 + 10t
2t
4+5
1+ t2

1 dt 1 dt
= ∫ = ∫
2 t 2 + 5t + 1 2  5  2  3  2
2 t +  − 
 4 4

5 3
t+ −
1 1 4 4 +C
= log
2 2⋅ 3 5 3
t+ +
4 4 4

1 4t + 2 1 2t + 1
= log + C = log +C
3 4t + 8 3 2t + 4

x
+1
2 tan
1 2
= log +C
3  x
2  tan  + 2
 2

www.sakshieducation.com
www.sakshieducation.com

1
4. ∫ 2 − 3cos 2x dx
1 dx
Sol. ∫ dx = ∫
2 − 3cos 2x 1 − tan 2 x
2−3
1 + tan 2 x

put tan x = t ⇒ sec 2 x dx = dt

dt
dx =
1+ t2

dt dt
GI = ∫ =∫
1+ t 2
2 + 2t − 3 + 3t 2
2

1− t2
2−3
1 + t2

dt 1 dt
=∫
5∫
=
5t − 1
2
 1 
2
t2 −  
 5

1
t−
1 (1/ 2) 5 +C
= log
5 5 1
t+
5

1 5t − 1
= log +C
2 5 5t + 1

1 5 tan x − 1
= log +C
2 5 5 tan x + 1

5. ∫x 1 + x − x 2 dx

Sol. Let x = A(1 – 2x) + B


Equating the coefficients of x

1 = –2A ⇒ A = –1/2
Equating the constants

0 = A + B ⇒B = –A = 1/2

∫x 1 + x − x 2 dx =
www.sakshieducation.com
www.sakshieducation.com

1 1

2 ∫ (1 − 2x) 1 + x − x 2 dx + ∫ 1 + x − x 2 dx
2

2 2
1 (1 + x − x 2 )3/ 2 1  5  1
=− + ∫   −  x −  dx
2 3/ 2 2  2   2

 1  1 
  x −  1+ x − x2  x − 
= − (1 + x − x 2 )3/2 +  
1 1 2 25
+ sin −1  2 
3 2 2 8  5 
  
  2 

1 (2x − 1) 1 + x − x 2 5  2x − 1 
= − (1 + x − x 2 )3/2 + + sin −1  +C
3 8 16  5 

dx
6. ∫
(1 + x) 3 + 2x − x 2

dx dx
Sol. ∫ =∫
(1 + x) 3 + 2x − x 2 (1 + x) (3 − x)(1 + x)

Put 1 + x = t 2 ⇒ dx = 2t dt

2t dt 2dt 2 dt
G.I. = ∫ =∫ =∫
t 2 t 2 (4 − t 2 ) t2 4 − t2 t3 4
−1
t2

4 8
Put 2
− 1 = y2 ⇒ − dt = 2y dy
t t3

2 y
⇒ 3
dt = − dy
t 4

y dy 1 1
G.I. = 2 ∫ − = − ∫ dy = − y + C
4 y 2 2 2

1 4
=− −1 + C
2 t2
1 4 1 3− x
=− −1 + C − +C
2 1+ x 2 3+ x

www.sakshieducation.com
www.sakshieducation.com

dx
7. ∫ 4 cos x + 3sin x
dx dx
Sol. ∫
4 cos x + 3sin x ∫ 1 − tan 2
=
x x
2 tan
4 2 +3 2
x 2 x
1 + tan 2 1 + tan
2 2

x 2dt
Put tan = t ⇒ dx =
2 1+ t2

2dt
I=∫ 1+ t2 = 2∫
dt
(1 − t ) 3 ⋅ 2t
2
4 − 4t 2 + 6t
4 +
1+ t2 1+ t2

1 dt 1 dt
=− ∫
2 t2 − 3 t −1
=− ∫
2  3 2  5 2
2 t −  − 
 4 4

3 5
t− −
1 1 4 4 +C
=− log
2 2⋅ 5 3 5
t− +
4 4 4

1 t−2 1 2t − 4
= − log + C = − log +C
5 t + (1/ 2) 5 2t + 1

 x 
2  tan − 2 
= − log   +C
1 2
5 x
2 tan + 1
2

1
8. ∫ sin x + 3 cos x
dx

x 2dt
Sol. Let t = tan so that dx =
2 1+ t2

2t 1 − t2
sin x = , cos x =
1+ t 2
1+ t2

www.sakshieducation.com
www.sakshieducation.com

dt
2
I=∫ 1+ t2 = 2∫
dt
2t 3(1 − t )
2
3(1 − t 2 ) + 2t
+
1 + t2 1+ t2

2 dt 2 dt
= ∫
3 1− t2 + 2 t
= ∫ 2
3  2   1 
2

3   −t − 
 3  3

2 1
+t−
2 1/ 4 3 3 +C
= log
3 3 2 1
−t+
3 3

1
t+
1 3 + C = 1 log 3t + 1
= log +C
2 3−t 2 3( 3 − t)

x
3 tan +1
1 2
= log +c
2  x
3  3 − tan 
 2

dx
9. ∫ 5 + 4 cos 2x
dt
Sol. t = tan x ⇒ dt = sec2 x dx, dx =
1+ t2

dt
I = ∫ 1+ t 2 = ∫
2 dt
5 + 4(1 − t ) 5 + 5t + 4 − 4t 2
2

1+ t2

dt 1 t
=∫ = tan −1   + C
t +9 3
2
 3

1  tan x 
= tan −1  +C
3  3 

www.sakshieducation.com
www.sakshieducation.com

2sin x + 3cos x + 4
10. ∫ 3sin x + 4 cos x + 5 dx
Sol.
2sin x + 3cos x + 4
∫ 3sin x + 4 cos x + 5 dx
Let 2 sinx + 3 cos x + 4 = A ( 3sinx + 4cosx + 5 ) + B
d
( 3sinx + 4cosx + 5) + C
dx

2 sinx + 3 cos x + 4
= A(3sinx + 4cosx + 5) + 3(3cosx – 4sinx) + C
Equating the coefficients of
sin x and cos x,
we get 3A – 4B = 2
and 4A + 3B = 3
Solving these equations,
18 1
A= , B=
25 25

Equating the constants


4 = 5A + C
18 2
C = 4 – 5A = 4 – 5 ⋅ =
25 5
18 1 2
2 sinx + 3 cos x + 4 = ( 3sinx + 4cosx + 5) + ( 3cosx − 4sinx ) +
25 25 5

2sin x + 3cos x + 4
∴∫ dx
3sin x + 4cos x + 5

18 1 3cos x − 4sin x
=
25 ∫ dx + ∫
25 3sin x + 4 cos x + 5

2 dx
+ ∫
5 3sin x + 4 cos x + 5

18 1
= x + log | 3sin x + 4 cos x + 5 |
25 25
2 dx
+ ∫
5 3sin x + 4 cos x + 5
...(1)

dx
Let I = ∫
3sin x + 4 cos x + 5

www.sakshieducation.com
www.sakshieducation.com

2dt
x 2dt 1 + t2
Put tan = t ⇒ dx =
2 1+ t2
I = ∫ 3 − 2t 4(1 + t 2 )
+ +5
1+ t2 1+ t2

dt dt
= 2∫ = 2∫
6t + 4 − 4t + 5 + 5t
2 2
t + 6t + 9
2

dt 2 2
= 2∫ =− =−
(t + 3) 2 t +3 3 + tan
x
2

Substituting in (1)
18 1
I= ⋅ x + log | 3sin x + 4 cos x + 5 |
25 25
4
− +C
 x
5  3 + tan 
 2

5−x
11. ∫ dx on (2, 5).
x−2

5−x (5 − x)2
Sol: ∫ dx = ∫ dx
x−2 (x − 2) (5 − x)

5−x
=∫ dx
(x − 2) (5 − x)

5−x
=∫ dx
5x − x 2 − 10 + 2x

5−x
=∫ dx
7x − x 2 − 10

d
Let 5 − x = A (7x − x 2 − 10) + B
dx

= A(7 − 2x) + B

Equating coefficient of x and constant terms on both sides we get


7 3
–2A = –1 ⇒ A = 1/2 and 7A + B = 5 ⇒ B = 5 – 7A = 5 − = .
2 2

www.sakshieducation.com
www.sakshieducation.com

1 3
∴5 − x = (7 − 2x) +
2 2
5−x
∴∫ dx
7x − x 2 − 10

1 (7 − 2x) 3 dx
= ∫ dx + ∫ …(1)
2 7x − x 2 − 10 2 7x − x 2 − 10

Consider the first integral on RHS and suppose 7x – x2 – 10 = t ⇒ (7 – 2x)d = dt

1 (7 − 2x) 1 dt 1 −1/ 2
∴ ∫ dx = ∫ = ∫ t dt
2 7x − x − 10
2 2 t 2

1 t1/ 2
= = t = 7x − x 2 − 10 …(2)
2 1/ 2

Consider the second integral and

7x − x 2 − 10 = −(x 2 − 7x + 10)
 7 49 49 
= −  x2 − 2   x + − + 10 
 2 4 4 
 7  9
2
= −  x −  − 
 2  4 

 7 3 
2 2
= −  x −  −   
 2   2  
2 2
3  7
=   −x − 
2  2

dx dx
∴∫ =∫
7x − x 2 − 10 2
3  7
2

  −x − 
2  2

 7
 x− 
= sin −1  2 = sin −1  2x − 7  …(3)
3  
 3 

 
 2 

∴ From (1), (2) and (3)


5−x
∫ dx =
7x − x 2 − 10
3  2x − 7 
7x − x 2 − 10 + sin −1  +c
2  3 

www.sakshieducation.com
www.sakshieducation.com

1+ x
12. ∫ dx on ( −1,1)
1− x

1+ x (1 + x) 2
Sol: ∫ dx = ∫ dx
1− x 1− x

1+ x dx xdx
=∫ dx = ∫ +∫
1− x 2
1− x2 1− x2
1 ( −2x)dx
= sin −1 x −
2 ∫ 1− x2

= sin −1 x − 1 − x 2 + c

dx
13. ∫ on (–1, 3).
(1 − x) 3 − 2x − x 2

1
Sol: Put 1 – x = 1/t ⇒ x = 1 −
t

1
∴ dx = + dt
t2
2
 1  1
Also 3 − 2x − x 2 = 3 − 1 −  − 1 − 
t   
t 

2 1 2 
= 3+ − 2 −  2 − + 1
t t t 
4 1 4t − 1
= − = 2
t t2 t

1
 2  dt
=∫  
dx t
∴∫
(1 − x) 3 − 2x − x 2  1  4t − 1
 
t t2

dt 2 4t − 1
=∫ = +c
4t − 1 4
1
= 4t − 1 + c
2

1  1 
= 4  −1 + c
2  1− x 

www.sakshieducation.com
www.sakshieducation.com

1 4 −1+ x 1 3+ x
= +c = .
2 1− x 2 1− x

dx
14. ∫ ( x + 2) x +1

dx
Sol. ∫ ( x + 2) x +1

put x+1 =t 2

dx = 2tdt and x+2=1+t 2

2t
G .I . = ∫ dt
(1 + t 2 ) t
= 2. tan −1 t + c = 2 tan −1 x + 1 + c

dx
15. ∫ ( 2 x + 3) x+2

Sol. put x+2 =t 2

dx = 2tdt and 2x+3=2t 2 − 1

2t 1
G.I . = ∫ dt = 2 ∫ dt
( 2t − 1) t
2
( 2t )
2
−1

1 2 t −1
= log +c
2 2 t +1

1 2x + 4 −1
= log +c
2 2x + 4 + 1

www.sakshieducation.com
www.sakshieducation.com

dx
16. ∫
(1 + x ) x − x2

dx dx
Sol. ∫ =∫
(1 + x ) x−x 2
(1 + x ) x 1− x

put x=sin 2t ⇒ dx = 2sin t.cos t.dt

1
dt = 2. ( tan t − sec t ) + c
2 sin t.cos t.dt
=∫ = 2∫
(1 + sin t ) sin t.cos t 1 + sin t

1
= 2∫ dt = 2. ( tan t − sec t ) + c
1 + sin t

dx
17. ∫ ( x + 1) 2 x 2 + 3x + 1

dx
Sol. ∫ ( x + 1) 2 x 2 + 3x + 1

1 1− t −1
put x+1 = ⇒ x = and dx= 2 dt
t t t

1 −1
g.i. = ∫ . dt
1 1− t   1− t 
2 t2
. 2  + 3  +1
t  t   t 

−1
=∫ dt
2 + 2t 2 − 4t + 3t − 3t 2 + t 2

1
= −∫ dt = 2 2 − t + c
2−t

1 2x +1
= 2 2− +c = 2 +c
x +1 x +1

www.sakshieducation.com
www.sakshieducation.com

18. ∫ e x − 4dx

ex − 4
Sol. ∫ e x − 4dx = ∫
ex − 4
dx

ex 4
=∫ dx − ∫ dx
ex − 4 ex − 4

e− x/ 2
= 2 e − 4 − 4∫
x
dx
1 − 4e − x

e− x /2
= 2 e x − 4 + 4∫ dx
1− 4 (e )
− x/ 2 2

e− x /2
= 2 e − 4 + 4.∫
x
dx
1 − ( 2e − x /2 )
2

= 2 e x − 4 + 4sin −1 2e− x / 2 + c
−1 2e− x /2
= 2 e − 4 + 4 tan
x
+c
1 − 4e − x

2
= 2 e x − 4 + 4 tan −1 +c
e −4
x

19. ∫ 1 + sec xdx

x
2 cos 2
1 + cos x 2 dx
∫ 1 + sec xdx = ∫
cos x
dx = ∫
x
1 − 2 sin 2
2

x 1 x
2.cos 2.cos
=∫ 2 dx = 2 ∫ 2 2 dx
2 2
 x  x
1 −  2 sin  1 −  2 sin 
 2  2

 x
= 2sin −1  2 sin  + c
 2
www.sakshieducation.com
www.sakshieducation.com

1
20. ∫ 1 + x4
dx

1
Sol. ∫ 1 + x4
dx

1 2 1 1 + x2 + 1 − x2
2 ∫ 1 + x4 2∫
= dx = dx
1 + x4

1  1 + x2 1 − x2 
= ∫  + 4 
dx
1+ x 1+ x 
4
2

 1 1 
1+ 2 −1
1  x + x2 
= ∫ dx
2  x2 + 1 x2 + 1 
 x2 x2 

   1 1 
1 1 x− x+ − 2 
 1+ 2 1−  1 1 x− 1 x
= tan −1 +c
dx  2  2
1 x x2 log
2∫ 
= dx − ∫ 2 2 2 1
  x+ + 2 
( ) ( 2)
2 2
1 2
 1 2
 
 x−  + 2 x+  −  x
  x  x 

1  −1 x 2 − 1 1 x2 + 1 − 2 
=  tan − log 2 +c
2 2 x 2 2 x + 1 + 2 

dx
21. Evaluate ∫ 5 + 4 cos x .

x 2 dt
Sol: Put tan = t then dx =
2 1+ t2

1− t2
And cos x =
1+ t2

2dt
dx 1+ t2
∫ 5 + 4 cos x = ∫  1− t2 
5 + 4 2 
 1+ t 

www.sakshieducation.com
www.sakshieducation.com

2dt dt
=∫ = 2∫ 2 2
9+ t 2
3 +t
1 t
= 2   tan −1  
3  3
 x
 tan 
2
= tan −1  2 +c

3  3 

dx
22. ∫ 3cos x + 4sin x + 6
x 2 dt
Sol: Let tan = t then dx =
2 1+ t2

2t 1− t2
sin x = and cos x =
1+ t2 1 + t2

dx
∴∫
3cos x + 4sin x + 6

2dt
=∫ 1+ t2
 1 − t 2   2t 
3 2 
+ 4 2 
+6
 1+ t   1+ t 

2 dt
=∫
3 − 3t + 8t + 6 + 6t 2
2

2dt
=∫ 2
3t + 8t + 9
2 dt
= ∫
3 t2 + 8 t + 3
3
2 dt
= ∫
3  4 2 16
t + 3  +3− 9
 
2 dt
= ∫
3  4 2 11
t+  +
 3 9

www.sakshieducation.com
www.sakshieducation.com

2 dt
= ∫
3  4  2  11  2
t +  + 
 3  3 
 4
2 3 t+ 
= tan −1  3
3 11  11 
 
 3 

2  3t + 4 
= Tan −1   + c.
11  11 

1
23. Evaluate ∫ dx on I = (0, 1).
sin −1 x 1 − x 2

1
Sol: Let sin–1 x = t then dx = dt
1− x2

1 1
∴∫ dx = ∫ dt
−1
sin x 1 − x 2 t

= ∫ t −1/ 2 dt

= 2 t + c = 2 sin −1 x + c .

x
24. Find ∫ dx , x ∈ I = (0, 1).
1− x

Sol: Let 1 – x = t2 over (0, 1)


Then –dx = 2t dt and x = 1 – t2

x (1 − t 2 )2tdt
∴∫ dx = − ∫
1− x t

 t3 
= −2 ∫ (1 − t) 2 dt = −2  t − 
 3
 (1 − x)3/ 2 
= −2  1 − x − 
 3 
2
= (1 − x)3 / 2 − 2 1 − x + c
3

www.sakshieducation.com
www.sakshieducation.com

dx
25. Evaluate ∫ (x + 5) on (−4, ∞) .
x+4

Sol: Let x + 4 = t2 then dx = 2t dt

Defined over (–4, ∞)


dx 2t dt dt
∴∫ =∫ 2 = 2∫ 2
(x + 5) x + 4 (t + 1)t t +1
= 2 tan −1 t + c
= 2 tan −1 ( x + 4) + c

dx
26. Evaluate ∫ .
x 2 + 2x + 10

Sol: x 2 + 2x + 10 = x 2 + 2x + 1 + 9

= (x + 1) 2 + 32

dx dx
∴∫ =∫
x 2 + 2x + 10 (x + 1) 2 + 32

Take x + 1 = t ⇒ dx = dt

dt t
=∫ = sinh −1   + c
t 2 + 32 3

 x +1 
= sinh −1  +c
 3 

 dx  x 
 use ∫ = sinh −1    .
 a 2 − x2  a  

www.sakshieducation.com

You might also like