Integration by Parts: F (X) G (X) DX
Integration by Parts: F (X) G (X) DX
com
INTEGRATION BY PARTS
Note 2: If u and v are two functions of x; u′, u″, u″′ …… denote the successive derivatives of u and
v1, v2, v3, v4, v5 … the successive integrals of v then the extension of integration by pairs is
eax
∫ e cos bx dx = (a cos bx + b sin bx) + c
ax
Theorem:
a 2 + b2
eax eax
= cos bx − ∫ (− b sin bx) dx
a a
eax b
= cos bx + ∫ eax sin bx dx
a a
www.sakshieducation.com
www.sakshieducation.com
eax b b2
= cos bx + 2 eax sin bx − 2 I
a a a
b 2 1 ax
⇒ I 1 + 2 = 2 e [ a cos bx + b sin bx ]
a a
a 2 + b 2 1 ax
⇒ I 2 = 2 e [ a cos bx + b sin bx ]
a a
eax
∴I = 2 [ a cos bx + b sin bx ] + c
a + b2
eax
Theorem: ∫ eax sin bx dx = (a sin bx − b cos bx)
a 2 + b2
eax eax
= sin bx − ∫ b cos bx dx
a a
1 b
= eax sin bx − ∫ eax cos bx dx
a a
1 b eax eax
= eax sin bx − cos bx − ∫ (−b sin bx) dx
a a a a
1 b b2
= eax sin bx − 2 eax cos bx − 2 ∫ eax sin bx dx
a a a
1 ax b ax b2
= e sin bx − 2 e cos bx − 2 I
a a a
a2 1
⇒ I 1 + 2 = 2 eax [ a sin bx − b cos bx ]
b a
a 2 + b 2 eax
⇒ I 2 = 2 [ a sin bx − b cos bx ]
b a
eax
∴I = [ a sin bx − b cos bx ] + c
a 2 + b2
www.sakshieducation.com
www.sakshieducation.com
Proof:
(2n + 1)π
1. ∫ x sec
2
x dx on I⊂R\ : n is an integer
2
−1 1
∫e tan x + dx , x ∈ R.
x
2.
1+ x2
Sol.
1
Let f (x) = tan −1 x so that f ′(x) =
1+ x2
∴ ∫ e x tan −1 x +
1
1+ x 2
x −1 x
(
dx = e tan x + C ∵ ∫ e [ f (x) + f ′(x) ] dx = e ⋅ f (x) + C
x
)
log x
3. ∫ dx on (0, ∞).
x2
log x 1 1 1
Sol. ∫ 2
dx = (log x) − + ∫ ⋅ dx
x x x x
1 1
= − log x − + C
x x
www.sakshieducation.com
www.sakshieducation.com
4. ∫ (log x)
2
dx on (0, ∞).
1
Sol. ∫ (log x) 2 dx = (log x) 2 x − ∫ x ⋅ 2 log x ⋅ dx
x
π
5. ∫e
x
(sec x + sec x tan x)dx on I ⊂ R \ (2n + 1) : n ∈ Z
2
∫e
x
6. cos x dx on R.
= e x (sin x + cos x) − I
2I = e x (sin x + cos x)
ex
I= (sin x + cos x) + C
2
www.sakshieducation.com
www.sakshieducation.com
1 1
8. ∫ + x
on 2n − π, 2n + π n∈Z
2
(tan x log sec x)e dx
2
1
Sol. let f = log | sec x |⇒ f ' = ⋅ sec x ⋅ tan x ⋅
sec x
= tan x
1. ∫x
n
log x dx on (0, ∞), n is a real number and n ≠ –1.
x n +1 1 1
Sol. ∫ x n log x dx = (log x) − ∫ x n +1 dx
n +1 n +1 x
x n +1 (log x) 1
=
n +1
−
n +1 ∫ x n dx
x n +1 (log x) x n +1
= − +C
n +1 (n + 1) 2
x n +1
= [(n + 1) log x − 1] + C
(n + 1) 2
∫ log(1 + x
2
2. )dx on R.
1
= log(1 + x 2 ) ⋅ x − ∫ x 2x dx
1 + x2
1 + x2 −1
= x log(1 + x 2 ) − 2 ∫ dx
1+ x2
www.sakshieducation.com
www.sakshieducation.com
dx
= x log(1 + x 2 ) − 2 ∫ dx + 2 ∫
1+ x2
= x log(1 + x 2 ) − 2x + 2 tan −1 x + C
Sol. ∫ x log x dx =
2 2 1
= log x ⋅ x 3/ 2 − ∫ x 3/ 2 ⋅ dx
3 3 x
2 3/ 2 2
= x (log x) − ∫ x1/ 2dx
3 3
2 3/ 2 2 x 3/ 2
= x (log x) − +C
3 3 3/ 2
2 3/ 2 4
= x log x − x 3/ 2 + C
3 9
4. ∫e
x
dx on (0, ∞).
Sol. let x = t ⇒ x = t 2 , dx = 2t dt
∫e
x
dx = 2 ∫ t e t dt = 2 te t − ∫ e t dt
= 2(te t − e t ) + C
= 2 xe x
− 2e x
+C
∫x
2
5. cos x dx on R.
www.sakshieducation.com
www.sakshieducation.com
∫ x sin
2
6. x dx on R.
1
Sol. ∫ x sin 2 x dx = ∫ x(1 − cos x)dx
2
1
= ∫ xdx − ∫ x cos 2x dx
2
1 x 2 sin 2x 1
= − x ⋅ − ∫ sin 2x dx
2 2 2 2
x2 x 1
= − sin 2x + ∫ sin 2x dx
4 4 4
x2 x 1
= − sin 2x − cos 2x + C
4 4 8
∫ x cos
2
7. x dx on R.
1
Sol. ∫ x cos2 x dx = ∫ x(1 + cos 2x)dx
2
1
= ∫ x dx + ∫ x cos 2x dx
2
1 x 2 sin 2x 1
= + x − ∫ sin 2x dx
2 2 2 2
x2 x 1
= + sin 2x − ∫ sin 2x dx
4 4 4
x2 x 1
= + sin 2x + cos 2x + C
4 4 8
8. ∫ cos x dx on R.
Sol. x = t 2 ⇒ dx = 2t dt
www.sakshieducation.com
www.sakshieducation.com
π
9. ∫ x sec
2
2x dx on I ⊂ R \ (2nπ + 1) : n ∈ Z
4
tan 2x 1
Sol. ∫ x sec2 2x dx = x − ∫ tan 2x dx
2 2
tan 2x 1 1
=x − ⋅ log | sec 2x | + C
2 2 2
tan 2x 1
=x − log | sec 2x | + C
2 4
10. ∫ x cot
2
x dx on I ⊂ R \{nπ : n ∈ Z} .
= ∫ x csc2 x dx − ∫ x dx
x2
= x(− cot x) + ∫ cot x dx −
2
x2
= − x cot x + log | sin x | − +C
2
π
11. ∫e
x
(tan x + sec 2 x)dx on I ⊂ R \ (2n + 1) : n ∈ Z
2
= e x tan x + C
1 + x log x
∫e dx on (0, ∞).
x
12.
x
1 + x log x x 1
Sol. ∫ e x dx = ∫ e log x + dx
x x
= e x log x + C
www.sakshieducation.com
www.sakshieducation.com
dx
13. ∫ (x 2 + a 2 )2 ,(a > 0) on R.
So that dx = a sec2θ dθ
dx a sec2 θdθ
∴∫ = ∫ (a 2 tan 2 θ + a 2 )2
(x 2 + a 2 ) 2
1
= 3 ∫
cos 2 θdθ
a
1 1 + cos 2θ
= ∫ 2 dθ
a3
1
= ∫ 1 ⋅ dθ + ∫ cos 2θ dθ
2a 3
1 1
= θ + 2 sin 2θ
2a 3
1 −1 x 1 −1 x
= tan + sin 2 tan + c
2a 3 a 2 a
1 x 1 x
= 3
tan −1 + 3 sin 2 tan −1 + c.
2a a 4a a
14. ∫e
x
log(e2x + 5e x + 6)dx on r.
= (e x )2 + 3e x + 2e x + 6
= e x (e x + 3) + 2(e x + 3)
= (e x + 3)(e x + 2)
∫e
x
log(e2x + 5e x + 6)dx
www.sakshieducation.com
www.sakshieducation.com
Let ex = t then ex dx = dt
∴ ∫ e x log(e2x + 5e x + 6)dx
t t
= log(t + 2)t − ∫ dt + log(t + 3) ⋅ t − ∫ dt
t+2 t +3
(t + 2) − 2 (t + 3) − 3
= t ⋅ log(t + 2) − ∫ dt + t ⋅ log(t + 3) − ∫ dt
t+2 t +3
dt dt
= t ⋅ log(t + 2) − ∫ dt + 2 ∫ + t log(t + 3) − ∫ dt + 3∫
t+2 t +3
= t log(t + 2) − t + 2 log(t + 2) + t log(t + 3) − t + 3log(t + 3)
= 2 log | (t + 2) | +3log | (t + 3) | −2t + t[log(t + 2)(t + 3)]
∴ ∫ cos(log x)dx =
x
[cos(log x) + sin(log x)] + c
2
www.sakshieducation.com
www.sakshieducation.com
x+2
16. ∫e
x
dx on I ⊂ R \ {–3}
(x + 3) 2
x+2
Sol. ∫ e x dx
(x + 3) 2
x + 3 − 1
= ∫ ex 2
dx
(x + 3)
1 (−1) x 1
= ∫ ex + dx = e +C
x + 3 (x + 3) x +3
2
xe x
17. ∫ (x + 1)2 dx on I ⊂ R \ {–1}
xe x x + 1 −1 x
Sol. ∫ dx = ∫ (x + 1)2 e dx
(x + 1)2
1 1 x
= ∫ − 2
e dx
x + 1 (x + 1)
1 ( −1) x
= ∫ + 2
e dx
x + 1 (x + 1)
1 x ex
= e + C = x +1 + C
x +1
www.sakshieducation.com
www.sakshieducation.com
x2 1 2 1
Sol. ∫ x tan −1 x dx = (tan −1 x) − ∫x ⋅ dx
2 2 1+ x2
x 2 (tan −1 x) 1 1
= − ∫ 1 − dx
2 2 1+ x2
x 2 (tan −1 x) 1
= − (x − tan −1 x) + C
2 2
x 2 (tan −1 x) x tan −1 x
= − + +C
2 2 2
(x 2 + 1) x
= tan −1 x − + C
2 2
2. ∫x
2
tan −1 x dx, x ∈ R .
x3 1 3 1
Sol. ∫ x 2 tan −1 x dx = (tan −1 x)
3 3 ∫ 1+ x2
− x dx
x 3 (tan −1 x) 1 x(x 2 + 1) − x
= − ∫ dx
3 3 1 + x2
x 3 (tan −1 x) 1 1 xdx
= − ∫ xdx + ∫
3 3 3 1+ x2
x 3 (tan −1 x) x 2 1
= − + log |1 + x 2 | +C
3 6 6
tan −1 x
3. ∫ x2
dx, x ∈ I ⊂ R \ {0}
tan −1 x 1 1 1 1
Sol. ∫ dx = ∫ tan −1 x = (tan −1
x) − + ∫ dx
x2 x2 x x 1+ x2
tan −1 x 1 2x dx
=− + ∫ 2
x 2 x (1 + x 2 )
tan −1 x 1 1 1
=− + ∫ 2 − (2x dx)
x 2 x 1+ x2
www.sakshieducation.com
www.sakshieducation.com
tan −1 x dx 1 2x dx
+∫
x 2 ∫ 1+ x2
= −
x
tan −1 x 1
=− + log | x | − log |1 + x 2 | +C
x 2
−1
4. ∫ x cos x dx, x ∈ (−1,1)
Sol. ∫ x cos −1 x
d
= cos −1 ∫ x dx − ∫ [cos −1 x]∫ x dx dx
dx
x2 −1 x 2
= cos −1 x − ∫ dx
2 1− x2 2
x2 1 x2
= cos −1 x + ∫ dx
2 2 1− x2
x2 −1 1 1 − x2 −1
= cos x − ∫ dx
2 2 1− x2
x2 1 1 1
= cos −1 x − ∫ 1 − x 2 dx + ∫ dx
2 2 2 1− x2
x2 1 1 1 1
= cos −1 x − x 1 − x 2 + sin −1 x + sin −1 x + C
2 2 2 2 2
x2 1 1
= cos −1 x − x 1 − x 2 + sin −1 x + C
2 4 4
5. ∫x
2
sin −1 x dx, x ∈ (−1,1)
Sol. ∫ x 2 sin −1 x dx
x3 1 3 1
= (sin −1 x)
3 3 ∫ 1 − x 2
− x dx
x 3 −1 1 x[1 − (1 − x 2 )]
= sin x − ∫ dx
3 3 1− x2
www.sakshieducation.com
www.sakshieducation.com
x 3 −1 1 xdx 1
= sin x − ∫ + ∫ x 1 − x 2 dx
3 3 1− x2 3
x 3 −1 1 1 (1 − x 2 )3/ 2
= sin x + 1 − x 2 + +C
3 3 3 (3 / 2)(−2)
x 3 −1 1− x2 1
= sin x + − (1 − x 2 )3/ 2 + C
3 3 9
x2 1 x2
= log(1 + x) − ∫ dx
2 2 1+ x
x2 1 1 − (1 − x 2 )
= log(1 + x) − ∫ dx
2 2 1+ x
x2 1 dx 1
log(1 + x) − ∫
2 1+ x 2 ∫
= + (1 − x)dx
2
x2 1 1 x2
= log(1 + x) − log(1 + x) + x − + C
2 2 2 2
(x 2 − 1) x x2
= log(1 + x) + − +C
2 2 4
Sol. put x = t 2 ⇒ dx = 2t dt
= −2 x cos x + 2 sin x + C
www.sakshieducation.com
www.sakshieducation.com
8. ∫e
ax
sin(bx + c)dx , (a, b, c ∈ R, b ≠ 0) on R.
Sol.
cos(bx + c) 1
= eax − + ∫ cos(bx + c)e a dx
ax
b b
eax ⋅ cos(bx + c) a ax
=− + ∫ e cos(bx + c)dx
b b
eax ⋅ cos(bx + c) a ax bx + c 1
b b∫
=− + e ⋅ sin − sin(bx + c)eax ⋅ a ⋅ dx
b b
eax ⋅ cos(bx + c) a ax a2
=− + 2 e sin(bx + c) − 2 I
b b b
a2 eax a a 2 + b2 eax
1 + 2 I = − cos(bx + c) + 2 eax sin(bx + c) I = [a sin(bx + c) − b(cos(bx + c)]
b b b b2 b2
eax
∴I = [a sin(bx + c) − b(cos(bx + c)] + C1
a 2 + b2
9. ∫a
x
cos 2x dx on R(a > 0 and a ≠ 1).
Sol. ∫ a x cos 2x dx
sin 2x 1
= ax − ∫ sin 2x ⋅ a x log a dx
2 2
a x ⋅ sin 2x log a x
2 ∫
= + a (− sin 2x)dx
2
a x sin 2x log a x 2x 1
= + (a ⋅ cos − ∫ cos 2x ⋅ a x log a dx)
2 2 2 2
www.sakshieducation.com
www.sakshieducation.com
−1 3x − x
3
1 1
10. ∫ tan
1 − 3x
2
dx on I ⊂ R \ −
3
,
3
.
−1 3x − x
3
Then ∫ tan
dx
1 − 3x
2
3 tan t − tan 3 t 2
= ∫ tan −1
1 − 3 tan 2 t
sec t dt
d
= 3 t ∫ sec2 t dt − ∫ (t) ∫ sec2 t dt dt
dt
= 3[t(tan t) − ∫ (1) tan t dt]
(
= 3 x ⋅ tan −1 x − log 1 + x 2 + C )
3
= 3x tan −1 x − log(1 + x 2 ) + C
2
3
= 3x tan −1 (x) − log(1 + x 2 ) + C
2
−1
11. ∫ sinh x dx on R.
1
= x.sinh −1 x − ∫ .xdx
1+ x 2
1 2x
= x.sinh −1 x − ∫ dx
= 2 1+ x2
1
= x.sinh −1 x − 2. 1 + x 2 + c
2
= x.sinh −1 x − 1 + x 2 + c
www.sakshieducation.com
www.sakshieducation.com
−1
12. ∫ cosh xdx on [1, ∞].
Ans. x cosh −1 x − x 2 − 1 + C
−1
13. ∫ tanh x dx on (–1, 1).
= ∫ 1.tanh −1 x dx
1
= x.tanh −1 x − ∫ xdx
1− x2
1 −2x
= x.tanh −1 x + ∫ dx
2 1− x2
1
(
= x.tanh −1 x + log 1 − x 2 + c
2
)
14. Find ∫ eax cos(bx + c)dx on R where a, b, c are real numbers and b ≠ 0.
sin(bx + c) sin(bx + c)
A = eax − ∫ aeax dx
b b
1 a
= eax sin(bx + c) − ∫ eax sin(bx + c)dx
b b
1 ax a − cos(bx + c) ax cos(bx + c)
= e sin(bx + c) − eax − ∫ ae − dx + C1
b b b b
1 ax a ax a2
= e sin(bx + c) + 2 e cos(bx + c) − 2 A + C 2
b b b
a2 a ax 1 ax
1 + 2 A = 2 e cos(bx + c) + e sin(bx + c) + C2
b b b
eax
Hence A = [a cos(bx + c) + b sin(bx + c)] + K
a 2 + b2
www.sakshieducation.com
www.sakshieducation.com
c3
Where k = a constant
a + b2
2
By taking c = 0, we get
eax
∫ e cos bx dx = [a cos bx + b sin bx] + K
ax
a 2 + b2
1− x
15. Evaluate ∫ tan −1 dx on (–1, 1).
1+ x
1 − x 1 − cos θ 2 sin 2 θ / 2 θ
= = = tan 2
1 + x 1 + cos θ 2 cos θ / 2
2
2
−1 1− x θ
∫ tan dx = ∫ tan −1 tan 2 ( − sin θ)dθ
1+ x 2
θ
= − ∫ tan −1 tan (sin θ)dθ
2
1
2∫
=− θ⋅ sin θ dθ
1
= − θ(− cos θ) − ∫ (− cos θ)dθ + C
2
1
= (θ cos θ − sin θ) + C
2
=
1
2 (
x cos −1 x − 1 − x 2 + C )
1 − sin x
16. Evaluate ∫ e x dx on I ⊂ R \ {2nπ
π : n ∈ Z}.
1 − cos x
1 − sin x 1 − sin x
Sol. =
1 − cos x 2 sin 2 x / 2
x x x x
1 − 2sin cos 2sin cos
2 2= 1 2 2
= −
2 x 2 x 2 x
2sin 2sin 2sin
2 2 2
1 x x
= csc2 − cot
2 2 2
www.sakshieducation.com
www.sakshieducation.com
1 − sin x x1 2 x x
∫e dx = ∫ e csc − cot dx
x
1 − cos x 2 2 2
x
= ∫ e x [ f (x) + f ′(x)] dx where f (x) = − cot
2
x
= e x f (x) + C = −e x cot +C
2
2x
17. Evaluate ∫ tan −1 2
dx on I ⊂ R \ (–1, 1).
1− x
2x
∴ ∫ tan −1 2
dx
1− x
2x 1
= ∫ tan −1 2
(1 + x 2 ) dx
1− x 1+ x2
= ∫ (2θ + nπ) ∫ sec2 θdθ
( )
= 2 θ tan θ − ∫ tan θdθ + nπ tan θ + c
= 2(θ tan θ + log | cos θ | + nπ tan θ + c
www.sakshieducation.com
www.sakshieducation.com
2x
= x tan −1 2
− log(1 + x 2 ) + c
1− x
exp(m sin −1 x)
18. Find ∫x
2
dx on (–1, 1) where m is a real number. (Here for Y ∈ R, exp.(y)
1− x2
stands for ey).
Sol. Let t = sin–1 x, then
1
x = sin t, dt = dx , for x ∈ (–1, 1)
1 − x2
exp(m sin −1 x)
Hence ∫ x 2 dx = ∫ e mt sin 2 tdt
1− x 2
1 − cos 2t
= ∫ emt dt
2
1 mt 1
=
2 ∫ e dt − ∫ emt ⋅ cos 2t dt + c
2
…(1)
Case (i): m = 0
exp(m sin −1 x)
From (1) ∫ x 2 dx
1− x 2
1 1
=
2 ∫ dt − ∫ cos 2t dt + C
2
t sin 2t
= − +C
2 4
sin −1 x 1
= − sin(2sin −1 x) + C
2 4
Case (ii):m ≠ 0
exp(m sin −1 x)
From (1) ∫ x 2 dx
1− x 2
1 e mt 1 e mt
= − (m cos 2t + 2 sin 2t) + C1
2 m 2 m2 + 4
e mt 1 1
= m− 2 (m cos 2t + 2 sin 2t) + C1
2 m +4
−1
e m sin x
1 1
= m− 2 (m cos(2sin −1 x) + 2sin(2 sin −1 x) + C1
2 m +4
www.sakshieducation.com
www.sakshieducation.com
px + q d
Type I: If the integral is of the form ∫ ax 2 + bx + c dx then take px + q = A (ax 2 + bx + c) + B .
dx
px + q d
Type II: ∫ dx . Take px + q = A (ax 2 + bx + c) + B .
ax 2 + bx + c dx
d
Type III: ∫ (px + q) ax 2 + bx + c dx . Take px + q = A (ax 2 + bx + c) + B .
dx
1 1
Type IV: ∫ dx . To evaluate this put px + q = .
(px + q) ax 2 + bx + c t
1 1
Type V: ∫ dx . To evaluate this, put x = .
(ax + b) cx + d
2 2 t
px + q ax + b 1
Type VI : ∫
ax + b
dx or ∫ px + q
dx or ∫ (px + q) ax + b dx or ∫
(px + q) ax + b
dx . Put ax + b = t2.
1
Then dx = 2t dt .
a
multiply both numerator and denominator with sec2 x and take tan x = t.
dx dx dx
Type II: If the integral is of the form ∫ a + b cos x or ∫ a + bsin x or ∫ a cos x + bsin x + c , take
x 1 x 2dt 2 tan x / 2 2t
tan = t ⇒ sec2 dx = dt ⇒ (1 + tan 2 x / 2)dx = 2dt ⇒ dx = . sin x = = ,
2 2 2 1+ t2 1 + tan x / 2 1 + t 2
2
1 − tan 2 x / 2 1 − t 2
cos x = = .
1 + tan 2 x / 2 1 + t 2
www.sakshieducation.com
www.sakshieducation.com
a cos x + b sin x d
Type III :If the integral is of the form ∫ c cos x + d sin x dx , take a cos x + b sin x = A dx (c cos x + d
sin x). By equating the coefficients of cos x, sin x we get the values of A and B. Then the given
integral becomes A log|ccos x + d sin x| + Bx + k.
dx
Sol. ∫
2x − 3x 2 + 1
dx 1 dx
=∫ = ∫
2x 1 3 2
2 1
2
3 − x2 + − x −
3 3
3 3
1
x−
1 −1 3 + C = 1 sin −1 3x − 1 + C
= sin
3 2 3 2
3
sin θ
2. ∫ dθ
2 − cos 2 θ
sin θ
Sol. ∫ dθ
2 − cos 2 θ
dt dt
= ∫− = −∫
2 − t2 ( 2) 2 − t 2
t −1 cos θ
= − sin −1 + C = − sin +C
2 2
www.sakshieducation.com
www.sakshieducation.com
cos x
3. ∫ sin 2 x + 4 sin x + 5 dx
cos x
Sol. ∫ dx
sin 2 x + 4 sin x + 5
dt dt
=∫ =∫
t 2 + 4t + 5 (t + 2) 2 + 1
= tan −1 (t + 2) + C = tan −1 (sin x + 2) + C
dx
4. ∫ 1 + cos2 x
dx sec 2 dx sec 2 xdx
Sol. ∫ =∫ =∫
1 + cos 2 x sec 2 x + 1 tan 2 x + 2
dt 1 t
=∫ = tan −1 +C
t + ( 2)
2 2
2 2
1 tan x
= tan −1 +C
2 2
dx
5. ∫ 2 sin 2 x + 3cos2 x
dx sec 2 xdx
Sol. ∫ =∫
2 sin 2 x + 3cos 2 x 2 tan 2 x + 3
dt 1 dt
=∫
2∫
=
2t + 3
2
3
2
t +
2
2
2 2t
= tan −1 +C
3 3
2
2
www.sakshieducation.com
www.sakshieducation.com
1 2 tan x
= tan −1 +C
2 3 3
1 2
= tan −1 tan x + C
6 3
1
6. ∫ 1 + tan x dx
1
Sol. ∫ dx
1 + tan x
1 cos x dx 1 2 cos x dx
=∫ dx = ∫ = ∫
1+
sin x sin x + cos x 2 sin x + cos x
cos x
1 1 cos x − sin x
=
2 ∫ dx + ∫
2 sin x + cos x
dx
1 1
= x + log | sin x + cos x | +C
2 2
1
7. ∫ 1 − cot x dx
1 1 sin xdx
Sol. ∫ dx = ∫ dx = ∫
1 − cot x 1−
cos x sin x − cos x
sin x
1 1 cos x + sin x
=
2 ∫ dx + ∫
2 sin x − cos x
dx
1 1
= x + log | sin x − cos x | +C
2 2
www.sakshieducation.com
www.sakshieducation.com
1. ∫ 1 + 3x − x 2 dx
∫ 1 + 3x − x 2 dx = ∫ 1 − (x 2 − 3x)dx
Sol.
3 9
= ∫ 1 − (x − ) 2 − dx
2 2
2
13 3
= ∫ −
x −
2 2
3 3
x − 1 + 3x − x
2
x−
=
2 13
+ sin −1 2 +C
2 8 13
2
(2x − 3) 1 + 3x − x 2 13 −1 2x − 3
= + sin +C
2 8 13
9 cos x − sin x
2. ∫ 4sin x + 5cos x dx
9 cos x − sin x
Sol. ∫ dx
4sin x + 5cos x
d
let 9cosx-sinx =A ( 4sin x + 5cos x ) + B ( 4sin x + 5cos x )
dx
9cosx-sinx =A ( 4 cos x − 5sin x ) + B ( 4 sin x + 5 cos x )
www.sakshieducation.com
www.sakshieducation.com
4cos x − 5sin x
= ∫ dx + ∫ dx
4sin x + 5cos x
= x + log | 4sin x + 5cos x | +C
2cos x + 3sin x
3. ∫ 4 cos x + 5sin x dx
Sol. Let 2 cos x + 3 sin x = A(4 cosx + 5 sin x) + B(–4 sin x + 5 cos x)
Equating the coefficient of sinx and cosx, we get 4A + 5B = 2, 5A – 4B = 3.
A B 1
+5 −2 4 +5
−4 −3 5 −4
A B 1
= =
−15 − 8 −10 + 12 −16 − 25
23 2
A= ,B = −
41 41
2 cos x + 3sin x
∫ 4 cos x + 5sin x dx =
23 2 −4sin x + 5cos x
=
41 ∫ dx − ∫
41 4 cos x + 5sin x
dx
23 2
= x − log | 4 cos x + 5sin x | +C
41 41
dx
4. ∫ 1 + sin x + cos x
dx
Sol. ∫
1 + sin x + cos x
dx
= ∫ x x
2 tan 1 − tan 2
2 2
1 + +
x
2 x
1 + tan 1 + tan 2
2 2
www.sakshieducation.com
www.sakshieducation.com
x
dx sec2
=∫ 2
x x x
1 + tan 2 + 2 tan + 1 − tan 2
2 2 2
x
sec 2 x 1 x
=∫ 2 put tan = t ⇒ sec2 dx = dt
x 2 2 2
2 + 2 tan
2
dt dt
= 2∫ =∫ log |1 + t | +C
2 + 2t 1+ t
x
= log 1 + tan +C
2
dx
5. ∫ 3x 2 + x + 1
dx dx
Sol. ∫ =∫
3x + x + 1
2 1 1
3 x2 + x +
3 3
1 dx 1 dx
= ∫
3 2
1 1 1 3
= ∫
2 2
+ + − 1 11
x
6 3 36 x + +
6 6
1 1 x + (1/ 6)
= ⋅ tan −1 +C
3 11 ( 11/ 6)
6
2 6x + 1
= tan −1 +C
11 11
dx
6. ∫
5 − 2x 2 + 4x
dx
Sol. ∫
5 − 2x 2 + 4x
5 – 2x2 + 4x
5 5
= −2 x 2 − 2x − = −2 (x − 1) 2 − 1 −
2 2
www.sakshieducation.com
www.sakshieducation.com
7 7
= −2 (x − 1) 2 − = 2 − (x − 1)2
2 2
1
Now ∫ dx
5 − 2x 2 + 4x
1
=∫ dx
7
2 − (x − 1) 2
2
1 1
=
2 ∫ 2
dx
7
− (x − 1)
2
2
1 (x − 1)
= sin −1 +C
2 7/2
1 2
= sin −1 (x − 1) + C
2 7
www.sakshieducation.com
www.sakshieducation.com
x+1 =A ( 2x − 1) + B
1 3
∴ x+1 = ( 2x − 1) +
2 2
1 3
(2x − 1) +
x +1
∫ dx = ∫ 2 2 dx
x − x +1
2
x − x +1
2
1 (2x − 1)dx 3 dx
=
2 ∫ + ∫
x − x +1 2
2
x − x +1
2
3 dx
2∫
= x2 − x +1 +
2
1 3
2
x − +
2 2
1
3 x−
= x 2 − x + 1 + sinh −1 2 +C
2 3
2
3 2x − 1
= x 2 − x + 1 + sinh −1 +C
2 3
www.sakshieducation.com
www.sakshieducation.com
2. ∫ (6x + 5) 6 − 2x 2 + x dx
Sol.
let 6x+5=A
d
dx
( )
6 − 2x 2 + x + B
⇒ 6x + 5 = A(1 – 4x) + B
∫ (6x + 5) 6 − 2x 2 + x dx
3 13
=−
2 ∫ (1 − 4x) 6 − 2x 2 + x dx +
2
6 − 2x 2 + x dx
3 (6 − 2x 2 + x)3/ 2 13 x
=− + 2 ∫ 3 − x 2 + dx
2 3/ 2 2 2
2 2
13 7 1
= −(6 − 2x 2 + x)3/ 2 +
2 ∫ − x − dx
4 4
13
= −(6 − 2x 2 + x)3/ 2 +
2
1 2 x 1
x − 3− x + x−
4 2 49 −1
+ sin
4
+C
2 32 7
4
13 (4x − 1) 6 − 2x 2 + x 49 −1 4x − 1
= −(6 − 2x 2 + x)3/2 + + sin + C
2 16 × 2 32 7
13 637 4x − 1
= −(6 − 2x 2 + x)3/2 + (4x − 1) 6 − 2x 2 + x + sin −1 +C
16 32 2 7
www.sakshieducation.com
www.sakshieducation.com
dx
3. ∫ 4 + 5sin x
dx dx
Sol. ∫
4 + 5sin x ∫
=
x
2 tan
4+5 2
x
1 + tan 2
2
x x 1
put tan = t ⇒ sec2 ⋅ dx = dt
2 2 2
2dt 2dt
⇒ dx = =
sec2
x 1+ t2
2
dt dt
G.I. = 2 ∫ = 2∫
1+ t 2
4 + 4t 2 + 10t
2t
4+5
1+ t2
1 dt 1 dt
= ∫ = ∫
2 t 2 + 5t + 1 2 5 2 3 2
2 t + −
4 4
5 3
t+ −
1 1 4 4 +C
= log
2 2⋅ 3 5 3
t+ +
4 4 4
1 4t + 2 1 2t + 1
= log + C = log +C
3 4t + 8 3 2t + 4
x
+1
2 tan
1 2
= log +C
3 x
2 tan + 2
2
www.sakshieducation.com
www.sakshieducation.com
1
4. ∫ 2 − 3cos 2x dx
1 dx
Sol. ∫ dx = ∫
2 − 3cos 2x 1 − tan 2 x
2−3
1 + tan 2 x
dt
dx =
1+ t2
dt dt
GI = ∫ =∫
1+ t 2
2 + 2t − 3 + 3t 2
2
1− t2
2−3
1 + t2
dt 1 dt
=∫
5∫
=
5t − 1
2
1
2
t2 −
5
1
t−
1 (1/ 2) 5 +C
= log
5 5 1
t+
5
1 5t − 1
= log +C
2 5 5t + 1
1 5 tan x − 1
= log +C
2 5 5 tan x + 1
5. ∫x 1 + x − x 2 dx
1 = –2A ⇒ A = –1/2
Equating the constants
0 = A + B ⇒B = –A = 1/2
∫x 1 + x − x 2 dx =
www.sakshieducation.com
www.sakshieducation.com
1 1
−
2 ∫ (1 − 2x) 1 + x − x 2 dx + ∫ 1 + x − x 2 dx
2
2 2
1 (1 + x − x 2 )3/ 2 1 5 1
=− + ∫ − x − dx
2 3/ 2 2 2 2
1 1
x − 1+ x − x2 x −
= − (1 + x − x 2 )3/2 +
1 1 2 25
+ sin −1 2
3 2 2 8 5
2
1 (2x − 1) 1 + x − x 2 5 2x − 1
= − (1 + x − x 2 )3/2 + + sin −1 +C
3 8 16 5
dx
6. ∫
(1 + x) 3 + 2x − x 2
dx dx
Sol. ∫ =∫
(1 + x) 3 + 2x − x 2 (1 + x) (3 − x)(1 + x)
Put 1 + x = t 2 ⇒ dx = 2t dt
2t dt 2dt 2 dt
G.I. = ∫ =∫ =∫
t 2 t 2 (4 − t 2 ) t2 4 − t2 t3 4
−1
t2
4 8
Put 2
− 1 = y2 ⇒ − dt = 2y dy
t t3
2 y
⇒ 3
dt = − dy
t 4
y dy 1 1
G.I. = 2 ∫ − = − ∫ dy = − y + C
4 y 2 2 2
1 4
=− −1 + C
2 t2
1 4 1 3− x
=− −1 + C − +C
2 1+ x 2 3+ x
www.sakshieducation.com
www.sakshieducation.com
dx
7. ∫ 4 cos x + 3sin x
dx dx
Sol. ∫
4 cos x + 3sin x ∫ 1 − tan 2
=
x x
2 tan
4 2 +3 2
x 2 x
1 + tan 2 1 + tan
2 2
x 2dt
Put tan = t ⇒ dx =
2 1+ t2
2dt
I=∫ 1+ t2 = 2∫
dt
(1 − t ) 3 ⋅ 2t
2
4 − 4t 2 + 6t
4 +
1+ t2 1+ t2
1 dt 1 dt
=− ∫
2 t2 − 3 t −1
=− ∫
2 3 2 5 2
2 t − −
4 4
3 5
t− −
1 1 4 4 +C
=− log
2 2⋅ 5 3 5
t− +
4 4 4
1 t−2 1 2t − 4
= − log + C = − log +C
5 t + (1/ 2) 5 2t + 1
x
2 tan − 2
= − log +C
1 2
5 x
2 tan + 1
2
1
8. ∫ sin x + 3 cos x
dx
x 2dt
Sol. Let t = tan so that dx =
2 1+ t2
2t 1 − t2
sin x = , cos x =
1+ t 2
1+ t2
www.sakshieducation.com
www.sakshieducation.com
dt
2
I=∫ 1+ t2 = 2∫
dt
2t 3(1 − t )
2
3(1 − t 2 ) + 2t
+
1 + t2 1+ t2
2 dt 2 dt
= ∫
3 1− t2 + 2 t
= ∫ 2
3 2 1
2
3 −t −
3 3
2 1
+t−
2 1/ 4 3 3 +C
= log
3 3 2 1
−t+
3 3
1
t+
1 3 + C = 1 log 3t + 1
= log +C
2 3−t 2 3( 3 − t)
x
3 tan +1
1 2
= log +c
2 x
3 3 − tan
2
dx
9. ∫ 5 + 4 cos 2x
dt
Sol. t = tan x ⇒ dt = sec2 x dx, dx =
1+ t2
dt
I = ∫ 1+ t 2 = ∫
2 dt
5 + 4(1 − t ) 5 + 5t + 4 − 4t 2
2
1+ t2
dt 1 t
=∫ = tan −1 + C
t +9 3
2
3
1 tan x
= tan −1 +C
3 3
www.sakshieducation.com
www.sakshieducation.com
2sin x + 3cos x + 4
10. ∫ 3sin x + 4 cos x + 5 dx
Sol.
2sin x + 3cos x + 4
∫ 3sin x + 4 cos x + 5 dx
Let 2 sinx + 3 cos x + 4 = A ( 3sinx + 4cosx + 5 ) + B
d
( 3sinx + 4cosx + 5) + C
dx
2 sinx + 3 cos x + 4
= A(3sinx + 4cosx + 5) + 3(3cosx – 4sinx) + C
Equating the coefficients of
sin x and cos x,
we get 3A – 4B = 2
and 4A + 3B = 3
Solving these equations,
18 1
A= , B=
25 25
2sin x + 3cos x + 4
∴∫ dx
3sin x + 4cos x + 5
18 1 3cos x − 4sin x
=
25 ∫ dx + ∫
25 3sin x + 4 cos x + 5
2 dx
+ ∫
5 3sin x + 4 cos x + 5
18 1
= x + log | 3sin x + 4 cos x + 5 |
25 25
2 dx
+ ∫
5 3sin x + 4 cos x + 5
...(1)
dx
Let I = ∫
3sin x + 4 cos x + 5
www.sakshieducation.com
www.sakshieducation.com
2dt
x 2dt 1 + t2
Put tan = t ⇒ dx =
2 1+ t2
I = ∫ 3 − 2t 4(1 + t 2 )
+ +5
1+ t2 1+ t2
dt dt
= 2∫ = 2∫
6t + 4 − 4t + 5 + 5t
2 2
t + 6t + 9
2
dt 2 2
= 2∫ =− =−
(t + 3) 2 t +3 3 + tan
x
2
Substituting in (1)
18 1
I= ⋅ x + log | 3sin x + 4 cos x + 5 |
25 25
4
− +C
x
5 3 + tan
2
5−x
11. ∫ dx on (2, 5).
x−2
5−x (5 − x)2
Sol: ∫ dx = ∫ dx
x−2 (x − 2) (5 − x)
5−x
=∫ dx
(x − 2) (5 − x)
5−x
=∫ dx
5x − x 2 − 10 + 2x
5−x
=∫ dx
7x − x 2 − 10
d
Let 5 − x = A (7x − x 2 − 10) + B
dx
= A(7 − 2x) + B
www.sakshieducation.com
www.sakshieducation.com
1 3
∴5 − x = (7 − 2x) +
2 2
5−x
∴∫ dx
7x − x 2 − 10
1 (7 − 2x) 3 dx
= ∫ dx + ∫ …(1)
2 7x − x 2 − 10 2 7x − x 2 − 10
1 (7 − 2x) 1 dt 1 −1/ 2
∴ ∫ dx = ∫ = ∫ t dt
2 7x − x − 10
2 2 t 2
1 t1/ 2
= = t = 7x − x 2 − 10 …(2)
2 1/ 2
7x − x 2 − 10 = −(x 2 − 7x + 10)
7 49 49
= − x2 − 2 x + − + 10
2 4 4
7 9
2
= − x − −
2 4
7 3
2 2
= − x − −
2 2
2 2
3 7
= −x −
2 2
dx dx
∴∫ =∫
7x − x 2 − 10 2
3 7
2
−x −
2 2
7
x−
= sin −1 2 = sin −1 2x − 7 …(3)
3
3
2
www.sakshieducation.com
www.sakshieducation.com
1+ x
12. ∫ dx on ( −1,1)
1− x
1+ x (1 + x) 2
Sol: ∫ dx = ∫ dx
1− x 1− x
1+ x dx xdx
=∫ dx = ∫ +∫
1− x 2
1− x2 1− x2
1 ( −2x)dx
= sin −1 x −
2 ∫ 1− x2
= sin −1 x − 1 − x 2 + c
dx
13. ∫ on (–1, 3).
(1 − x) 3 − 2x − x 2
1
Sol: Put 1 – x = 1/t ⇒ x = 1 −
t
1
∴ dx = + dt
t2
2
1 1
Also 3 − 2x − x 2 = 3 − 1 − − 1 −
t
t
2 1 2
= 3+ − 2 − 2 − + 1
t t t
4 1 4t − 1
= − = 2
t t2 t
1
2 dt
=∫
dx t
∴∫
(1 − x) 3 − 2x − x 2 1 4t − 1
t t2
dt 2 4t − 1
=∫ = +c
4t − 1 4
1
= 4t − 1 + c
2
1 1
= 4 −1 + c
2 1− x
www.sakshieducation.com
www.sakshieducation.com
1 4 −1+ x 1 3+ x
= +c = .
2 1− x 2 1− x
dx
14. ∫ ( x + 2) x +1
dx
Sol. ∫ ( x + 2) x +1
put x+1 =t 2
2t
G .I . = ∫ dt
(1 + t 2 ) t
= 2. tan −1 t + c = 2 tan −1 x + 1 + c
dx
15. ∫ ( 2 x + 3) x+2
2t 1
G.I . = ∫ dt = 2 ∫ dt
( 2t − 1) t
2
( 2t )
2
−1
1 2 t −1
= log +c
2 2 t +1
1 2x + 4 −1
= log +c
2 2x + 4 + 1
www.sakshieducation.com
www.sakshieducation.com
dx
16. ∫
(1 + x ) x − x2
dx dx
Sol. ∫ =∫
(1 + x ) x−x 2
(1 + x ) x 1− x
1
dt = 2. ( tan t − sec t ) + c
2 sin t.cos t.dt
=∫ = 2∫
(1 + sin t ) sin t.cos t 1 + sin t
1
= 2∫ dt = 2. ( tan t − sec t ) + c
1 + sin t
dx
17. ∫ ( x + 1) 2 x 2 + 3x + 1
dx
Sol. ∫ ( x + 1) 2 x 2 + 3x + 1
1 1− t −1
put x+1 = ⇒ x = and dx= 2 dt
t t t
1 −1
g.i. = ∫ . dt
1 1− t 1− t
2 t2
. 2 + 3 +1
t t t
−1
=∫ dt
2 + 2t 2 − 4t + 3t − 3t 2 + t 2
1
= −∫ dt = 2 2 − t + c
2−t
1 2x +1
= 2 2− +c = 2 +c
x +1 x +1
www.sakshieducation.com
www.sakshieducation.com
18. ∫ e x − 4dx
ex − 4
Sol. ∫ e x − 4dx = ∫
ex − 4
dx
ex 4
=∫ dx − ∫ dx
ex − 4 ex − 4
e− x/ 2
= 2 e − 4 − 4∫
x
dx
1 − 4e − x
e− x /2
= 2 e x − 4 + 4∫ dx
1− 4 (e )
− x/ 2 2
e− x /2
= 2 e − 4 + 4.∫
x
dx
1 − ( 2e − x /2 )
2
= 2 e x − 4 + 4sin −1 2e− x / 2 + c
−1 2e− x /2
= 2 e − 4 + 4 tan
x
+c
1 − 4e − x
2
= 2 e x − 4 + 4 tan −1 +c
e −4
x
x
2 cos 2
1 + cos x 2 dx
∫ 1 + sec xdx = ∫
cos x
dx = ∫
x
1 − 2 sin 2
2
x 1 x
2.cos 2.cos
=∫ 2 dx = 2 ∫ 2 2 dx
2 2
x x
1 − 2 sin 1 − 2 sin
2 2
x
= 2sin −1 2 sin + c
2
www.sakshieducation.com
www.sakshieducation.com
1
20. ∫ 1 + x4
dx
1
Sol. ∫ 1 + x4
dx
1 2 1 1 + x2 + 1 − x2
2 ∫ 1 + x4 2∫
= dx = dx
1 + x4
1 1 + x2 1 − x2
= ∫ + 4
dx
1+ x 1+ x
4
2
1 1
1+ 2 −1
1 x + x2
= ∫ dx
2 x2 + 1 x2 + 1
x2 x2
1 1
1 1 x− x+ − 2
1+ 2 1− 1 1 x− 1 x
= tan −1 +c
dx 2 2
1 x x2 log
2∫
= dx − ∫ 2 2 2 1
x+ + 2
( ) ( 2)
2 2
1 2
1 2
x− + 2 x+ − x
x x
1 −1 x 2 − 1 1 x2 + 1 − 2
= tan − log 2 +c
2 2 x 2 2 x + 1 + 2
dx
21. Evaluate ∫ 5 + 4 cos x .
x 2 dt
Sol: Put tan = t then dx =
2 1+ t2
1− t2
And cos x =
1+ t2
2dt
dx 1+ t2
∫ 5 + 4 cos x = ∫ 1− t2
5 + 4 2
1+ t
www.sakshieducation.com
www.sakshieducation.com
2dt dt
=∫ = 2∫ 2 2
9+ t 2
3 +t
1 t
= 2 tan −1
3 3
x
tan
2
= tan −1 2 +c
3 3
dx
22. ∫ 3cos x + 4sin x + 6
x 2 dt
Sol: Let tan = t then dx =
2 1+ t2
2t 1− t2
sin x = and cos x =
1+ t2 1 + t2
dx
∴∫
3cos x + 4sin x + 6
2dt
=∫ 1+ t2
1 − t 2 2t
3 2
+ 4 2
+6
1+ t 1+ t
2 dt
=∫
3 − 3t + 8t + 6 + 6t 2
2
2dt
=∫ 2
3t + 8t + 9
2 dt
= ∫
3 t2 + 8 t + 3
3
2 dt
= ∫
3 4 2 16
t + 3 +3− 9
2 dt
= ∫
3 4 2 11
t+ +
3 9
www.sakshieducation.com
www.sakshieducation.com
2 dt
= ∫
3 4 2 11 2
t + +
3 3
4
2 3 t+
= tan −1 3
3 11 11
3
2 3t + 4
= Tan −1 + c.
11 11
1
23. Evaluate ∫ dx on I = (0, 1).
sin −1 x 1 − x 2
1
Sol: Let sin–1 x = t then dx = dt
1− x2
1 1
∴∫ dx = ∫ dt
−1
sin x 1 − x 2 t
= ∫ t −1/ 2 dt
= 2 t + c = 2 sin −1 x + c .
x
24. Find ∫ dx , x ∈ I = (0, 1).
1− x
x (1 − t 2 )2tdt
∴∫ dx = − ∫
1− x t
t3
= −2 ∫ (1 − t) 2 dt = −2 t −
3
(1 − x)3/ 2
= −2 1 − x −
3
2
= (1 − x)3 / 2 − 2 1 − x + c
3
www.sakshieducation.com
www.sakshieducation.com
dx
25. Evaluate ∫ (x + 5) on (−4, ∞) .
x+4
dx
26. Evaluate ∫ .
x 2 + 2x + 10
Sol: x 2 + 2x + 10 = x 2 + 2x + 1 + 9
= (x + 1) 2 + 32
dx dx
∴∫ =∫
x 2 + 2x + 10 (x + 1) 2 + 32
Take x + 1 = t ⇒ dx = dt
dt t
=∫ = sinh −1 + c
t 2 + 32 3
x +1
= sinh −1 +c
3
dx x
use ∫ = sinh −1 .
a 2 − x2 a
www.sakshieducation.com