0% found this document useful (0 votes)
199 views9 pages

Irfp4232Pbf: PDP Mosfet

This document provides specifications for a MOSFET device optimized for plasma display panel applications. It details key parameters such as breakdown voltage, on-resistance, threshold voltage, leakage currents, capacitances, switching times and avalanche energy ratings. Temperature ranges and maximum ratings are also specified.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
199 views9 pages

Irfp4232Pbf: PDP Mosfet

This document provides specifications for a MOSFET device optimized for plasma display panel applications. It details key parameters such as breakdown voltage, on-resistance, threshold voltage, leakage currents, capacitances, switching times and avalanche energy ratings. Temperature ranges and maximum ratings are also specified.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

PD - 96965A

PDP MOSFET IRFP4232PbF


Features
l Advanced process technology
Key Parameters
l Key parameters optimized for PDP Sustain & VDS min 250 V
Energy Recovery applications VDS (Avalanche) typ. 300 V
l Low EPULSE rating to reduce the power
RDS(ON) typ. @ 10V 30 m:
dissipation in Sustain & ER applications
l Low QG for fast response
EPULSE typ. 310 µJ
l High repetitive peak current capability for IRP max @ TC= 100°C 117 A
reliable operation TJ max 175 °C
l Short fall & rise times for fast switching

l175°C operating junction temperature for

improved ruggedness D
l Repetitive avalanche capability for robustness

and reliability
G

S TO-247AC

Description
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch
applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C
operating junction temperature and high repetitive peak current capability. These features combine to
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.

Absolute Maximum Ratings


Parameter Max. Units
VGS Gate-to-Source Voltage ±20 V
VGS (TRANSIENT) Gate-to-Source Voltage ±30
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 60 A
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 42
IDM Pulsed Drain Current c 240
IRP @ TC = 100°C Repetitive Peak Current g 117
PD @TC = 25°C Power Dissipation 430 W
PD @TC = 100°C Power Dissipation 210
Linear Derating Factor 2.9 W/°C
TJ Operating Junction and -40 to + 175 °C
TSTG Storage Temperature Range
Soldering Temperature for 10 seconds 300
Mounting Torque, 6-32 or M3 Screw x
10lb in (1.1N m) x N
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case f ––– 0.35 °C/W

Notes  through … are on page 8


www.irf.com 1
09/14/07
Downloaded from: http://www.datasheetcatalog.com/
IRFP4232PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
BVDSS Drain-to-Source Breakdown Voltage 250 ––– ––– V VGS = 0V, ID = 250µA
∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 180 ––– mV/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– 30 35.7 mΩ VGS = 10V, ID = 42A e
VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 V VDS = VGS, ID = 250µA
∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -15 ––– mV/°C
IDSS Drain-to-Source Leakage Current ––– ––– 5.0 µA VDS = 200V, VGS = 0V
––– ––– 150 VDS = 200V, VGS = 0V, TJ = 125°C
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V
gfs Forward Transconductance 95 ––– ––– S VDS = 25V, ID = 42A
Qg Total Gate Charge ––– 160 240 nC VDD = 125V, ID = 42A, VGS = 10V e
Qgd Gate-to-Drain Charge ––– 60 –––
td(on) Turn-On Delay Time ––– 37 ––– VDD = 125V, VGS = 10V e
tr Rise Time ––– 100 ––– ns ID = 42A
td(off) Turn-Off Delay Time ––– 64 ––– RG = 5.0Ω
tf Fall Time ––– 63 ––– See Fig. 22
tst Shoot Through Blocking Time 100 ––– ––– ns VDD = 200V, VGS = 15V, RG= 4.7Ω
L = 220nH, C= 0.4µF, VGS = 15V
––– 310 –––
EPULSE Energy per Pulse µJ VDS = 200V, RG= 4.7Ω, TJ = 25°C
L = 220nH, C= 0.4µF, VGS = 15V
––– 950 –––
VDS = 200V, RG= 4.7Ω, TJ = 100°C
Ciss Input Capacitance ––– 7290 ––– VGS = 0V
Coss Output Capacitance ––– 610 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 240 ––– ƒ = 1.0MHz, See Fig.5
Coss eff. Effective Output Capacitance ––– 420 ––– VGS = 0V, VDS = 0V to 200V
LD Internal Drain Inductance ––– 5.0 ––– Between lead, D

nH 6mm (0.25in.)
G
LS Internal Source Inductance ––– 13 ––– from package
S
and center of die contact

Avalanche Characteristics
Parameter Typ. Max. Units
EAS Single Pulse Avalanche Energyd ––– 220 mJ
EAR Repetitive Avalanche Energy c ––– 43 mJ
VDS(Avalanche) Repetitive Avalanche Voltagec 300 ––– V
IAS Avalanche Currentd ––– 42 A

Diode Characteristics
Parameter Min. Typ. Max. Units Conditions
IS @ TC = 25°C Continuous Source Current ––– ––– 60 MOSFET symbol
(Body Diode) A showing the
ISM Pulsed Source Current ––– ––– 240 integral reverse
(Body Diode)c p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.0 V TJ = 25°C, IS = 42A, VGS = 0V e
trr Reverse Recovery Time ––– 240 360 ns TJ = 25°C, IF = 42A, VDD = 50V
Qrr Reverse Recovery Charge ––– 1230 1850 nC di/dt = 100A/µs e

2 www.irf.com

Downloaded from: http://www.datasheetcatalog.com/


IRFP4232PbF
1000 1000
VGS VGS
TOP 15V TOP 15V
10V 10V
ID, Drain-to-Source Current (A)

ID, Drain-to-Source Current (A)


8.0V 8.0V
BOTTOM 7.0V BOTTOM 7.0V

100 7.0V 100


7.0V

10 10

≤ 60µs PULSE WIDTH ≤ 60µs PULSE WIDTH


Tj = 25°C Tj = 175°C
1 1
0.1 1 10 100 0.1 1 10 100

VDS, Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics

1000 4.0

RDS(on) , Drain-to-Source On Resistance


ID = 42A
VGS = 10V
ID, Drain-to-Source Current(Α)

3.0
100
(Normalized)
TJ = 175°C

2.0

TJ = 25°C
10

1.0
VDS = 30V
≤ 60µs PULSE WIDTH
1
0.0
4.0 5.0 6.0 7.0 8.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature (°C)

Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature

1200 1000

L = 220nH L = 220nH
C = 0.4µF C = Variable
1000 800
100°C 100°C
Energy per pulse (µJ)

25°C
Energy per pulse (µJ)

25°C

800 600

600 400

400 200

200 0
150 160 170 180 190 200 160 170 180 190 200 210 220 230

VDS, Drain-to -Source Voltage (V) ID, Peak Drain Current (A)

Fig 5. Typical EPULSE vs. Drain-to-Source Voltage Fig 6. Typical EPULSE vs. Peak Drain Current
www.irf.com 3

Downloaded from: http://www.datasheetcatalog.com/


IRFP4232PbF
1600 1000.0
L = 220nH
1400

ISD, Reverse Drain Current (A)


C= 0.4µF
1200 100.0
C= 0.3µF
Energy per pulse (µJ)

TJ = 175°C
C= 0.2µF
1000

800 10.0

600

400 1.0 TJ = 25°C

200
VGS = 0V
0
0.1
25 50 75 100 125 150
0.2 0.4 0.6 0.8 1.0 1.2
Temperature (°C)
VSD , Source-to-Drain Voltage (V)
Fig 7. Typical EPULSE vs.Temperature Fig 8. Typical Source-Drain Diode Forward Voltage

12000 20
VGS = 0V, f = 1 MHZ ID= 42A
Ciss = Cgs + Cgd, Cds SHORTED

VGS, Gate-to-Source Voltage (V)


10000 Crss = Cgd VDS = 200V
16 VDS= 125V
Coss = Cds + Cgd
VDS= 50V
C, Capacitance (pF)

8000
Ciss
12

6000
8
4000

4
2000
Coss
Crss 0
0
1 10 100 1000
0 40 80 120 160 200 240 280
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)

Fig 9. Typical Capacitance vs.Drain-to-Source Voltage Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage

60 1000
OPERATION IN THIS AREA
54 LIMITED BY R DS(on)
ID, Drain-to-Source Current (A)

48
100
ID , Drain Current (A)

42 1µsec

36
10µsec
30 10
24 100µsec

18
1
12
Tc = 25°C
6 Tj = 175°C
Single Pulse
0 0.1
25 50 75 100 125 150 175 1 10 100 1000
TC , CaseTemperature (°C) VDS , Drain-to-Source Voltage (V)

Fig 11. Maximum Drain Current vs. Case Temperature Fig 12. Maximum Safe Operating Area
4 www.irf.com

Downloaded from: http://www.datasheetcatalog.com/


IRFP4232PbF
1000
( Ω)
600

EAS, Single Pulse Avalanche Energy (mJ)


RDS (on), Drain-to -Source On Resistance m

ID = 42A I D
TOP 12A
500 800 18A
BOTTOM 42A

400
TJ = 25°C
600

300
TJ = 125°C
400
200

200
100

0 0
4.0 6.0 8.0 10.0 25 50 75 100 125 150 175
VGS, Gate-to-Source Voltage (V) Starting TJ , Junction Temperature (°C)

Fig 13. On-Resistance Vs. Gate Voltage Fig 14. Maximum Avalanche Energy Vs. Temperature
5.5 200
ton= 1µs
VGS(th) Gate threshold Voltage (V)

5.0 Duty cycle = 0.25


160
Half Sine Wave

Repetitive Peak Current (A)


4.5 Square Pulse
ID = 250µA
4.0
120

3.5

3.0 80

2.5
40
2.0

1.5 0
-75 -50 -25 0 25 50 75 100 125 150 175 25 50 75 100 125 150 175
TJ , Temperature ( °C ) Case Temperature (°C)

Fig 15. Threshold Voltage vs. Temperature Fig 16. Typical Repetitive peak Current vs.
Case temperature

D = 0.50
Thermal Response ( ZthJC )

0.1
0.20
0.10
0.05 R1
R1
R2
R2
R3
R3
R4
R4
Ri (°C/W) τi (sec)
0.01 0.02 τJ τC 0.0091 0.000003
τJ τ
0.01 τ1 0.0487 0.000071
τ2 τ3 τ4
τ1 τ2 τ3 τ4 0.1264 0.001743
Ci= τi/Ri 0.1660 0.024564
Ci i/Ri
0.001
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006 1E-005 0.0001 0.001 0.01 0.1

t1 , Rectangular Pulse Duration (sec)

Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case


www.irf.com 5

Downloaded from: http://www.datasheetcatalog.com/


IRFP4232PbF
Driver Gate Drive
P.W.
D.U.T P.W.
Period D=
Period
+

ƒ VGS=10V *
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
- • Low Leakage Inductance D.U.T. ISD Waveform
Current Transformer
+
Reverse
‚ Recovery Body Diode Forward
-
„ + Current Current
- di/dt
D.U.T. VDS Waveform
Diode Recovery
 dv/dt
VDD

RG • di/dt controlled by RG VDD Re-Applied


• Driver same type as D.U.T. + Voltage Body Diode Forward Drop
• I SD controlled by Duty Factor "D" - Inductor Current
Inductor Curent
• D.U.T. - Device Under Test

Ripple ≤ 5% ISD

* VGS = 5V for Logic Level Devices


Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

V(BR)DSS
15V
tp

L DRIVER
VDS

RG D.U.T +
V
- DD
IAS A
VGS
20V
tp 0.01Ω
I AS

Fig 19a. Unclamped Inductive Test Circuit Fig 19b. Unclamped Inductive Waveforms

Id
Vds

Vgs

L
VCC
DUT Vgs(th)
0
1K

Qgs1 Qgs2 Qgd Qgodr

Fig 20a. Gate Charge Test Circuit Fig 20b. Gate Charge Waveform

6 www.irf.com

Downloaded from: http://www.datasheetcatalog.com/


IRFP4232PbF

Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms

Fig 21c. EPULSE Test Waveforms

RD VDS
V DS
90%
VGS
D.U.T.
RG
+
-V DD
10%
VGS
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 % td(on) tr t d(off) tf

Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms

www.irf.com 7

Downloaded from: http://www.datasheetcatalog.com/


IRFP4232PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)

TO-247AC Part Marking Information


(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/< 3$57180%(5
/27&2'( ,17(51$7,21$/
$66(0%/('21:: 5(&7,),(5 ,5)3(

,17+($66(0%/</,1(+ /2*2 +



'$7(&2'(
$66(0%/< <($5 
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH /27&2'( :((.
/,1(+

TO-247AC package is not recommended for Surface Mount Application.


Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.25mH,
RG = 25Ω, IAS = 42A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… Half sine wave with duty cycle = 0.25, ton=1µsec.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed for the Consumer market.
Qualification Standards can be found on IR’s Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/2007
8 www.irf.com

Downloaded from: http://www.datasheetcatalog.com/


This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.

Downloaded from: http://www.datasheetcatalog.com/

You might also like