0% found this document useful (0 votes)
82 views19 pages

+ 0.000004 MC 500C, C 0.42 CMC: Differentiation 2 1. A) L 1 + 0.0002

The document contains 7 multi-part math differentiation questions. Question 1 involves differentiating functions with respect to x and evaluating them at given values of x. Question 2 uses the product rule to differentiate composite functions. Question 3 applies the product rule and evaluates the derivative. Question 4 differentiates a function with respect to time and finds the value of the derivative at a given time. Question 5 uses trigonometric identities and the quotient rule to differentiate functions. Question 6 applies the quotient rule and finds the gradient of a curve at a point. Question 7 uses the chain rule to differentiate composite functions.

Uploaded by

Izaan ahmed
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
82 views19 pages

+ 0.000004 MC 500C, C 0.42 CMC: Differentiation 2 1. A) L 1 + 0.0002

The document contains 7 multi-part math differentiation questions. Question 1 involves differentiating functions with respect to x and evaluating them at given values of x. Question 2 uses the product rule to differentiate composite functions. Question 3 applies the product rule and evaluates the derivative. Question 4 differentiates a function with respect to time and finds the value of the derivative at a given time. Question 5 uses trigonometric identities and the quotient rule to differentiate functions. Question 6 applies the quotient rule and finds the gradient of a curve at a point. Question 7 uses the chain rule to differentiate composite functions.

Uploaded by

Izaan ahmed
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 19

A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

1. a) L = 1 + 0.0002  + 0.000004 2

dL  dL 
= 0.0002 + 0.000008  mC-1 M1   A1
d  d 
dL
When  = 500C, = 0.0002 + 0.000008(500)
d
= 0.0002 + 0.004 = 0.0042 m/C = 0.42 cmC-1 B1
[3]

dL dL d
b) = M1
dt d dt
d -0.002t
= -e B1
dt
0.02
t = 10,  = 500e- M1
dL dL
 = 0.00412 M1 (sub into from a)
d d
dL –0.02
So =-e  0.00412 A1
dt
= -0.00404 ms-1 A1
[7]

dy
2. a) = (2x2)(3 cos 3x) + (sin 3x)(4x) (product rule) M1 A1 A1
dx
= 6x2 cos 3x + 4x sin 3x or 2x(3x cos 3x + 2 sin 3x) A1 (simplified form)
[4]

2
   3 
b) x =  y = 2  sin   M1
2
2  2 
 2
= A1
2

dy 4 3
= sin = - 2 M1 A1 f.t
dx 2 2

2  
y  = - 2  x  M1 (line equation)
2 

 2
2
y+ = - 2x + 2
2
2
y + 2x = A1 A1 (simplified form)
2
[7]

Page 1
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

3. f () = 6 cos 2 + [(4)(-3 sin 3) + (cos 3)(4)] (product rule) M1 A1 A1


= 6 cos 2 12 sin 3 + 4 cos 3

 2 
When  = , f () = 6 cos   12    sin  3  + 4 cos  3  M1
6  6  6  6   6 
= 3 2 A1
[5]

4. a) V = 100 sin 300t

dV
= (100)(300) cos 300t = 30000 cos 300t Vs-1 M1 A1
dt
dV
When t = 0.015 s, = 30000 cos(300  0.015) = 30000 cos 4.5 = -6324 Vs-1 M1 A1
dt
[4]

 5
b) 300t = , M1 A1
2 2
 
t= , A1 (both)
600 120
[3]

sin 2x
5. a) y = tan 2x = M1
cos 2 x
dy (cos 2 x )(2 cos 2 x ) (sin 2 x )( 2 sin 2 x ) 2(cos 2 2x
sin 2 2 x )
= = A1 A1
dx cos 2 2 x cos 2 2 x
2(1)
= = 2 sec22x A1
2
cos 2 x
[4]

 dy  2 
2
b) When x = , = 2 sec2   = 2 =8 M1 A1
3 dx  3  2 
cos 

3 
[2]
dy
c) For turning point, =0
dx
0 = 2sec2 2x M1
2
0=
cos 2 2 x
2
no solution, since as 0 < cos22x  1, 2  A1
cos 2 2x
[2]

Page 2
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

3x
6. a) y =
2x 2 1
dy (2 x 2 1)(3) (3x )(4 x )
Gradient of curve = = (quotient rule) M1 A1
dx
 2
2x 1 
2

2
6 x 3 12 x
2
6x 3
2
= = A1
(2x 1)
2 2

2x 2 1
2

dy 6( 2 ) 2 3
At the point ( 2 , 2 ), = = 53 B1 f.t
dx [2( 2 ) 2 1]2
[4]

1 3
b) M = = M1 A1
53 5
3
(y 2)= (x 2 ) M1
5
5y 5 2 = 3x 3 2
5y – 3x = 2 2 A1 (simplified form)
[4]

Page 3
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

du
7. a) y = (3x2 – 1)5 Let u = 3x2 – 1, from which = 6x M1 (chain rule)
dx
dy du dy
Then y = u5 and
= 5u4 A1 ( and )
du dt dt
dy dy du
Hence =  = (5u4) (6x) = 30xu4 M1
dx du dx
= 30x(3x2–1)4 A1
[4]

b) y = (3x 2 5x 2)
du
Let u = 3x2 + 5x 2, then = 6x + 5 M1 A1
dx
u2
1 dy 1
1
So y = u = u 2 and = 2
du

Hence
dy dy du
= 
dx du dx
=  u (6x + 5)
1
2
 12
M1
6x 5
= A1
2 (3x 2 5x 2)
[4]

3
c) x =
2x 2 45
du
Let u = 2x2 – 4, then = 4x M1 A1
dx
dy
y = 3u-5 so = -15u-6
du

dy dy du 15 60 x
Hence =  =  4x = M1 A1
6
dx du dx u (2 x 2 4) 6
[4]

Page 4
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

dy
8. = - sin cos B1
d

dy
=0 M1
d
- sin cos = 0  sin = - cos
tan = -1 M1
3 7 
= , A1 A1 (-1 if in degrees)
4 4
3 2
= y= =- 2 M1 A1
4 2

7 2
= y= = 2 A1 (-1 if not simplified)
4 2
[8]

dy
9. a) Gradient of curve y = x2 – x – 2 : m = = 2x – 1 M1 A1
dx
At the point (2, 0), x = 2 hence m =2(2) –1 = 3
For normal, m = - 13 M1 A1 f.t
y = - 13 (x –2) M1 (use of line equation)
3y = -x +2
3y + x = 2 A1 (simplified form)
[6]

b) 3y + x = 2
y = x2 – x – 2

3x2 – 3x – 6 = 2 – x M1 (attempt to solve


simultaneously)
3x2 – 2x – 8 = 0 A1 (correct quadratic)
(3x + 4) (x – 2) = 0
x = - 34 A1
11
y= 12
A1
[4]

Page 5
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

d d d d 3 d
10.a) (3y2) (3x3) + (1) + (y ) = (0) M1
dx dx dx dx dx

dy dy
6y 9x2 + 0 + 3y2 = 0 A1 A1
dx dx

dy
Hence (6y + 3y2) = 9x2 M1
dx
dy 9x 2 3x 2
 = ( = ) A1
dx 6 y 3y 2 y ( 2 y)
[5]

b) y = -1  3 – 3x3 + 1 – 1 = 0 M1

3x = 3x3
1= x A1
dy 9
= M1
dx 6
3
= -3 A1
[4]

Page 6
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

dx
11.a) x = 3t  =3 B1
dt
dy
y = 2t(t –1) = 2t2 – 2t  = 4t – 2 B1
dt
dy
dy dt 4t 2
= = M1 A1 f.t.
dx dx 3
dt
[4]

b) x = 8  3t – 1 = 8  t = 3 M1 A1
y = 12 B1
dy 10
= B1 f.t
dx 3
(y – 12) = 103 (x – 8) M1
3y – 36 = 10x – 80
3y – 10x + 44 = 0 A1 (simplified form)
[6]

c) If it meet again, have simultaneous solution of 3y – 10x + 44 = 0


x = 3t – 1
y = 2t(t –1)

 6t(t – 1) – 10(3t –1) + 44 = 0 M1 (substituting in)


6t2 – 6t – 30t + 10 + 44 = 0
6t2 – 36t + 54 = 0
t2 – 6t + 9 = 0 A1
(t – 3)2 = 0
 t = 3 only A1
So no further points
[3]

Page 7
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

dx
12.a) =3 M1 A1
dt
dy 3
= A1
dt t2
dy
dy dt 1
= = M1 A1
dx dx t2
dt

dy 1
At (3p, 3
p
), = B1 f.t.
dx p2

Normal : m = p2 M1 A1

(y p3 )= p2(x 3p) M1
y 3
p
= p x 3p
2 3
A1
[10]

b) p2 = 4 M1
p=2 A1 (both)
[2]

Page 8
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

dy 2 cos 2 x 2 sin 2x
13.a) = M1 A1 A1
dx sin 2 x
cos 2x
2 cos 2 x
2 sin 2x 4 sin 2 x
= M1
sin 2 x
cos 2 x
4 sin 2x
=2 A1
sin 2 x
cos 2 x
[5]

dy
b) =0 B1
dt
4 sin 2x
2 =0
sin 2 x
cos 2 x

2sin2x + 2cos2x = 4sin2x M1 (attempt to solve)


cos2x = sin2x
1 = tan2x A1
[3]


c) tan2x = 1  2x = B1
4

x = B1 (-1 if in degrees)
8

y = ln
1 1 
 M1

2 2
= ln  2 A1
1
= 2
ln2 A1


x 0.38 0.4 M1
8
dy
0.05 0 -0.03
dx

Maximum point A1
[7]

Page 9
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

14. a) Total area = rl + r2 M1


8
h

r
r = 8sin B1

A = (8sin) 8 + (64sin2 M1
= 64(sin + sin2)
= 64 sin (1 + sin) A1
[4]

dA
b) = 64(cos + 2sin cos) M1 A1
d

0 = 64(cos + 2sin cos) M1


0 = cos(1+ 2sin) M1
cos = 0, or sin = 12 (not valid, since it would require  > )
= A1
2

But  = does not give a cone B1
2
[6]

Page 10
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

dy
15.a) = cos t B1
dt
dx
= 2cos2t B1
dt
dy cos t
= B1
dx 2 cos 2 t
[3]


b) t = , x=1 B1
4
1
dy
= 2
dx 0

 vertical tangent M1
so x = 1
or x – 1 = 0 is equation A1
[3]

cos t
c) =0 M1
2 cos 2 t

cos t = 0
 3
t= , A1 A1
2 2

x = 0, 0 A1
y = 1,-1 A1 (both)
[5]

Page 11
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

16.a) 3

 2
c
c x
= M1 A1
sin (  3) sin 

x sin(   3)
c = A1
sin 
x sin 3
= (since sin = sin(  ) A1
sin 
[4]

1
b) Area = 2
absinc M1
= 1
2
xc sin2

x sin 3 
= 1
x   sin2
sin  
2

x2 sin 3 ( 2 sin  cos )


= M1
2 sin 
x2
= 2sin3cos = x2sin3cos A1
2
[4]

dA
c) = x2 (3cos3cos  sin3sin) M1 A1 A1
d
0 = x2(3cos3cos  sin3sin)

sin3sin = 3cos3cos M1
sin 3 sin 
=3 M1
cos 3 cos 
tan3tan = 3 A1
[6]

d)  = 0.46 tan3tan = 2.57  = 0.47 tan3tan = 3.13 M1 A1 A1


 root in between
[3]

e) Use  = 0.46 –0.47 as initial value B1


If 1 = 0.46 If 1 = 0.465 If 1 = 0.47 M1
2 = 0.4690 2 = 0.4684 2 = 0.4677 A1 (any correct
3 = 0.4678 3 = 0.4679 3 = 0.4680 intermediate value)
4 = 0.4680  0.468 to 3dp  0.468 to 3dp A1 cao
 0.468 to 3dp
[4]

Page 12
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

cos x
17.a) y =
2 sin x

dy (2 sin x )( sin x ) cos x ( cos x )


= M1 A1 A1
dx ( 2 sin x ) 2
2 sin x sin 2 x cos 2 x
=
(2 sin x ) 2
2 sin x
1
= M1 (sin2x+cos2x =1) A1
(2 sin x ) 2
[5]

dy
b) = 0 1 2sinx = 0 M1
dx
sinx = 12
x =  , 5 A1 A1
6 6
3
3
x= y= 2
= M1 A1
6 3
3
2

3
3
x = 5 y= 2
= A1
6 3
3
2
[6]

c)
 3
( , )
6 3

(0, 12 )

G1 shape
 3
G2 intersections with axes
2 2
(-1 e.e.o.o.)
G1 maximum shown

5 3
( , )
6 3

[4]

Page 13
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

18.a) V = x  3x  4x
= 12x3 B1

A = 2  x  3x + 2  x  4x + 2  3x  4x M1
= 38x2 A1

A
x= M1
38

3
A
V = 12 
 M1

38 
3

A 2
= 12  A1

38 
[6]

dA
b) = 0.2
dt

dV dV dA
= M1
dt dA dt
1
dV A 2
= 12  3
2
 1
38  M1 A1
dA
38 
1
9 A 2
= 
19
38 

1
dV 9 152  2
=   0.2 M1
dt 19
38 
= 18
( = 0.189) cm3 s-1 A1
95
[5]

Page 14
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

dy 2x dy
19. a) 2y + 2 + 2x + 2y = 0 M1 (use of implicit)
dx x 3 dx
M1 (diff. ln(x2 – 3))
A1 A1

2x
(2y + 2x) = - 2y 2
M1
x 3
2x x 
2y y 2 
dy x 3
2

x 3 
= =- A1 f.t.
dx 2 y 2x x y
[6]

b) x = 2  y2 + ln1 + 4y = 5 M1
y2 + 4y – 5 = 0
(y + 5) (y – 1) = 0
y = 1, – 5 A1 A1

(2, 1):
dy
=–
1
2 = – 1 B1 f.t
dx 1
2
 m= 1 B1
y – 1= x – 2 M1
y= x 1 A1

(2, -5):
dy
=-
 5
2 = – 1 B1 f.t
dx 5
2
m=1 B1
y + 5 = x –2
y=x –7 A1
[10]

Page 15
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

dy
20.a) = 2e2x(x + 1)2 + e2x2(x + 1) M1 A1 A1
dx
= 2e2x(x + 1) (x + 1 + 1)
= 2e2x(x + 1) (x + 2) A1
[4]

dy
b) =0 M1
dx
x = -1 , x = -2 A1 A1
y = 0 , e-4 A1 (both)
[4]

c)

(0,1)

G1 intercept
G1 both turning points
G1 shape

(-2,e-4)
(-1,0)
[3]

dy
d) y = ax  = axlna B1
dx
at x = 1 : a lna = 2e2(2) (3) = 12e2 M1 A1
[3]

e) a = 26: a lna – 12e2 = -3.96 a = 27: a lna – 12e2 = 0.319 M1 A1


change of sign  root
[2]

f) Use of 26 – 27 for a1 B1
a1 = 26 a1 = 26.5 a1 = 27 M1
a2 = 27.21 a2 = 27.06 a2 = 26.90 A1 (at least 1
a3 = 26.84 a3 = 26.89 a3 = 26.93 intermediate
a4 = 26.95 a4 = 26.94 answer correct)
a5 = 26.92  26.9 to 1dp  26.9 to 1dp A1 cao
a6 = 26.93
 26.9 to 1dp
[4]

Page 16
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

21.a) y = 12 sin-13x  2y = sin-1 3x


 sin2y = 3x M1
 x = 13 sin2y A1
[2]

1 dy
b) 1 =  2cos2y M1 (implicit) M1(chain)
3 dx
dy 3
= A1
dx 2 cos 2 y
[3]

c) cos2y = (1 sin 2 2 y) M1

= (1 (3x ) 2 ) M1
dy 3
= A1
dx 2 1 9 x 2
[3]

dy
22.Increasing function if >0 M1
dx
dy x
= lnx + = lnx +1 M1 A1 (product)
dx x

So lnx + 1 > 0
lnx > -1 A1
x > e-1 A1
[5]

Page 17
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

23. a) x  -k B1 () B1 (-k)


[2]

b) t = a  x = a2 – k, y = 3a – a3 B1
t = -a  x = a2 – k, y = -3a + a3 (= -(3a – a3) B1

Putting in values of t of opposite signs gives the same x-value, but y-values of
opposite signs, so curve is symmetrical about x-axis. B1
[3]

dx dy
c) =2t; = 3 – 3t2 M1 A1 (both)
dt dt
dy dy dt 3 3t 2
=  = M1 A1 ft
dx dt dx 2t
[4]

3 3t 2
d) = 0  3 – 3t2 = 0 M1
2t
Giving t = 1 A1 (both)
t = 1  (1 k, 2) A1
t = -1 (1 k, -2) A1
[4]

dy 3
e) t = 0  = M1
dx 0
So tangent is vertical A1
t = 0  x = -k
So equation is x = -k A1
[3]

f) x = 0  t = k M1
 y =  (3k – (k)3) M1
=  (3 k)k A1

G1 (shape)
(1-k, 2) (0, (3-k)k) G1 (symmetry)
G1 ((-k,0))
(-k, 0)
(1-k, -2) (0, -(3-k)k)

[6]

Page 18
A LEVEL MATHEMATICS QUESTIONBANKS

DIFFERENTIATION 2

x 2x 2 A Bx C
24.a)  M1
(2 x )(1 x 2 ) 2 x 1 x2

x + 2x2  A (1+x2) + (Bx + C)(2 – x)

x = 2: 10 = 5A A=2 A1
Coeff. x2: 2=A–B B=0 A1
Const: 0 = A + 2C  C = -1 A1
[4]

b) f(x) = 2(2 – x)-1 – (1+x2)-1

f ( x ) = 2(-1)(-1)(2 x)-2 – (-1)(2x)(1+x2)-2 M1 (chain rule) A2


f (0) = 2(-1)(-1)(2 0)-2 – (-1)(20)(1+02)-2 M1
f (0) = 12 A1
[5]

Page 19

You might also like