0% found this document useful (0 votes)
69 views14 pages

Applied Calculus Integrals Guide

This document appears to be lecture notes on applied calculus for a first semester Bachelor of Science in Engineering program. It includes 15 examples of integrals with step-by-step solutions. The examples cover a range of integral types including substitutions, trigonometric integrals, logarithmic integrals and others. The document is authored by Engr. Riaz Ahmad Rana, an assistant professor at the Faculty of Engineering (FOE) at the University of Central Punjab (UCP) in Lahore, Pakistan.

Uploaded by

ALI ZUBAIR
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
69 views14 pages

Applied Calculus Integrals Guide

This document appears to be lecture notes on applied calculus for a first semester Bachelor of Science in Engineering program. It includes 15 examples of integrals with step-by-step solutions. The examples cover a range of integral types including substitutions, trigonometric integrals, logarithmic integrals and others. The document is authored by Engr. Riaz Ahmad Rana, an assistant professor at the Faculty of Engineering (FOE) at the University of Central Punjab (UCP) in Lahore, Pakistan.

Uploaded by

ALI ZUBAIR
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 14

LEC 20 [Applied Calculus] B.Sc.

Engineering 1st Semester

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 1 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 2 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 3 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 4 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 5 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 6 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 7 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 8 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

Some Standard Integrals.


Derivatives Antiderivative
𝑑(𝑥𝑛 ) 𝑛−1 𝑛 𝑥𝑛+1
1. = 𝑛𝑥 1. ∫ 𝑥 𝑑𝑥 = + 𝑐, 𝑛 ≠ 1
𝑑𝑥 𝑛+1

𝑑(𝑎𝑥+𝑏) 𝑛 (𝑎𝑥+𝑏)𝑛+1
2. = 𝑛(𝑎𝑥 + 𝑏)𝑛−1 . (𝑎) 2.∫(𝑎𝑥 + 𝑏)𝑛 𝑑𝑥 = +𝑐
𝑑𝑥 𝑎.(𝑛+1)

𝑑(𝑥)
3. =1 3. ∫ 1𝑑𝑥 = 𝑥 + 𝑐
𝑑𝑥

𝑑(𝑆𝑖𝑛𝑥 )
4. = 𝐶𝑜𝑠𝑥 4. ∫ 𝐶𝑜𝑠𝑥𝑑𝑥 = 𝑆𝑖𝑛𝑥 + 𝑐
𝑑𝑥

𝑑(𝐶𝑜𝑠𝑥 )
5. = −𝑆𝑖𝑛𝑥 5. ∫ 𝑆𝑖𝑛𝑥𝑑𝑥 = −𝐶𝑜𝑠𝑥 + 𝑐
𝑑𝑥

𝑑(𝑇𝑎𝑛𝑥 )
6. = 𝑆𝑒𝑐 2 𝑥 6. ∫ 𝑆𝑒𝑐 2 𝑥𝑑𝑥 = 𝑇𝑎𝑛𝑥 + 𝑐
𝑑𝑥

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 9 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

𝑑(𝐶𝑜𝑡𝑥)
7. = −𝐶𝑜𝑠𝑒𝑐 2 𝑥 7. ∫ 𝐶𝑜𝑠𝑒𝑐 2 𝑥𝑑𝑥 = −𝐶𝑜𝑡𝑥 + 𝑐
𝑑𝑥

𝑑(𝑆𝑒𝑐𝑥)
8. = 𝑆𝑒𝑐𝑥𝑇𝑎𝑛𝑥 8. ∫ 𝑆𝑒𝑐𝑥𝑇𝑎𝑛𝑥𝑑𝑥 = 𝑆𝑒𝑐𝑥 + 𝑐
𝑑𝑥

𝑑(𝐶𝑜𝑠𝑒𝑐𝑥)
9. = −𝐶𝑜𝑠𝑒𝑐𝑥𝐶𝑜𝑡𝑥 9.∫ 𝐶𝑜𝑠𝑒𝑐𝑥𝐶𝑜𝑡𝑥𝑑𝑥 = −𝐶𝑜𝑠𝑒𝑐𝑥 + 𝑐
𝑑𝑥

𝑑(𝑆𝑖𝑛 −1 𝑥) 1 1
10. = 10. ∫ 𝑑𝑥 = sin−1 𝑥 + 𝑐
𝑑𝑥 √1−𝑥2 √1−𝑥2

𝑑 (tan −1 𝑥) 1 1
11. = 11. ∫ 𝑑𝑥 = tan −1 𝑥 + 𝑐
𝑑𝑥 1+𝑥2 1+𝑥2

𝑑(sec −1 𝑥) 1 1
12. = 12. ∫ 𝑑𝑥 = sec −1 𝑥 + 𝑐
𝑑𝑥 𝑥√𝑥2 −1 𝑥√𝑥2 −1

𝑑(𝑒 𝑥 )
13. = 𝑒𝑥 13. ∫ 𝑒 𝑥 𝑑𝑥 = 𝑒 𝑥 + 𝑐
𝑑𝑥

𝑑(𝑎𝑥 ) 𝑥 𝑥 𝑎𝑥
14. = 𝑎 𝑙𝑛𝑎 14. ∫ 𝑎 𝑑𝑥 = +𝑐
𝑑𝑥 𝑙𝑛𝑎

𝑑(𝑙𝑛𝑥) 1 1
15. = 15. ∫ 𝑑𝑥 = 𝑙𝑛𝑥 + 𝑐
𝑑𝑥 𝑥 𝑥

Note: If in any of the above formula, argument is other than ‘x’ then
first, treat it as ‘x’, use the standard result and then divide derivative of
the argument.
𝑒. 𝑔 ∫ 𝐶𝑜𝑠𝑥𝑑𝑥 = 𝑆𝑖𝑛𝑥 + 𝑐
𝑆𝑖𝑛5𝑥
∫ 𝐶𝑜𝑠5𝑥𝑑𝑥 = +𝑐
5

EXAMPLE-1
I =∫ 𝑠𝑖𝑛𝑥 4 . 𝑐𝑜𝑠𝑥 𝑑𝑥

SOLUTION:
I =∫ 𝑠𝑖𝑛4 𝑥 . 𝑐𝑜𝑠𝑥 𝑑𝑥

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 10 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

Put u= sinx du =cox dx


I =∫ 𝑢 4 𝑑𝑥
𝑢5
I= +𝑐
5

𝑠𝑖𝑛5 𝑥
= +𝑐
5

EXAMPLE-2
I = ∫ 𝑐𝑜𝑠 (7𝜃 + 5) 𝑑𝜃

SOLUTION:
I = ∫ 𝑐𝑜𝑠 (7𝜃 + 5) 𝑑𝜃
𝑑𝑢
Put u = 7𝜃 + 5 du = 7 d 𝜃 d𝜃 =
7
𝑑𝑢
I = ∫ 𝑐𝑜𝑠𝑢 .
7
1
= ∫ 𝑐𝑜𝑠𝑢 𝑑𝑢
7
1
= 𝑠𝑖𝑛𝑢 + 𝑐
7
1
= sin(7𝜃 + 5) + 𝑐
7

EXAMPLE-3
𝑙𝑛𝑥
I=∫ 𝑑𝑥
𝑥

SOLUTION:
𝑙𝑛𝑥
I=∫ 𝑑𝑥
𝑥
1
= ∫ 𝑙𝑛𝑥 . dx
𝑥

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 11 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

1
Put u = lnx du = dx
𝑥

I = ∫ 𝑢 . 𝑑𝑢
𝑢2 (𝑙𝑛𝑥) 2
= +𝑐 = +𝑐
2 2

EXAMPLE-4
I = ∫ 𝑥 2 𝑠𝑖𝑛𝑥 3dx

SOLUTION:
I = ∫ 𝑠𝑖𝑛𝑥 3 . 𝑥 2 𝑑𝑥
𝑑𝑢
Put u = 𝑥3 du = 3𝑥 2 𝑑𝑥 𝑥 2 𝑑𝑥 =
3
𝑑𝑢
I = ∫ 𝑠𝑖𝑛𝑢.
3
1
I = ∫ 𝑠𝑖𝑛𝑢. 𝑑𝑢
3
1
= (−𝑐𝑜𝑢 ) + 𝑐
3

1
= - cosu+𝑐
3

1
=- 𝑐𝑜𝑠𝑥 3 + 𝑐
3

EXAMPLE-5
I = ∫(𝑥 2 + 2𝑥 − 3)2 . (𝑥 + 1)𝑑𝑥

SOLUTION:
I= ∫(𝑥 2 + 2𝑥 − 3)2 . (𝑥 + 1)𝑑𝑥

Put 𝑥 2 + 2𝑥 − 3 = u du = 2(𝑥 + 1)𝑑𝑥

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 12 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

(𝑥 + 1)𝑑𝑥 = 𝑑𝑢/2
𝑑𝑢
I = ∫ 𝑢2 .
2
1
= ∫ 𝑢 2 𝑑𝑢
2

1 𝑢3
= . +𝑐
2 3
1
= (𝑥 2 + 2𝑥 − 3 )3 + 𝑐
6

EXAMPLE-6
2𝑧
I=∫ 1 𝑑𝑧
( 𝑧 2 +1) ⁄3

SOLUTION:
2𝑧
I=∫ 1 𝑑𝑧
( 𝑧 2 +1) ⁄3

Put u = 𝑧2 + 1 du = 2z dz
𝑑𝑢
I=∫3
√𝑢

−1
I = ∫𝑢 3 𝑑𝑢
2
𝑢 ⁄3
I= 2⁄ +𝑐
3

⁄ 2
(𝑧 2 +1) 3 3 2⁄
= 2⁄ + 𝑐= (𝑧 2 + 1) 3 +𝑐
3 2

EXAMPLE-7
I = ∫ 28(7𝑥 − 2)−5 𝑑𝑥

SOLUTION:

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 13 of 14
LEC 20 [Applied Calculus] B.Sc. Engineering 1st Semester

I = ∫ 28(7𝑥 − 2)−5 𝑑𝑥

= 28∫ (7𝑥 − 2)−5 𝑑𝑥


𝑑𝑢
Put u = (7𝑥 − 2) du = 7dx dx =
7
1
So, I = 28∫ 𝑢 −5 𝑑𝑢
7
1
= 28. ∫ 𝑢 −5 𝑑𝑢
7

𝑢−4
= 4. + 𝑐 = -(7𝑥 − 2)−4 + 𝑐
−4

EXAMPLE-8
I = ∫ 𝑡 3 (1 + 𝑡 4 )3 𝑑𝑡

SOLUTION

𝐼 = ∫(1 + 𝑡 4 )3 𝑡 3 𝑑𝑡

𝑑𝑢
Put u =1 + 𝑡 4 du = 4𝑡 3dt 𝑡 3dt =
4
1
So, I = ∫ 𝑢 3 𝑑𝑢
4
1
= ∫ 𝑢 3 𝑑𝑢
4

1 𝑢4 1
= . + 𝑐= (1 + 𝑡 4 )4 + 𝑐
4 4 16

______________________________________________________________________________
Engr. Riaz Ahmad Rana Assistant Prof. FOE, UCP, Lahore Page 14 of 14

You might also like