0% found this document useful (0 votes)
97 views6 pages

Partial Differentiations: F Z X Z

The document discusses partial differentiations. Some key points include: 1) It defines partial derivatives and shows how to calculate first and second partial derivatives. 2) It discusses properties of partial derivatives including the chain rule and total differential. 3) It provides examples of calculating partial derivatives for various functions and their applications. 4) It discusses directional derivatives and how to calculate them in different directions.

Uploaded by

xz
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
97 views6 pages

Partial Differentiations: F Z X Z

The document discusses partial differentiations. Some key points include: 1) It defines partial derivatives and shows how to calculate first and second partial derivatives. 2) It discusses properties of partial derivatives including the chain rule and total differential. 3) It provides examples of calculating partial derivatives for various functions and their applications. 4) It discusses directional derivatives and how to calculate them in different directions.

Uploaded by

xz
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

Mathematics: Lecture 12 ‫مدرس ازهار مالك‬

Partial Differentiations:

Partial Differentiations

Z  f ( x, y) or f(x,y,z)  0

Z 
 Zx  fx 
x 
 1st partial derivatives
Z 
 Zy  fy 
y 

2Z 
 Z xx  f xx 
x 2

2Z 
 Z yy  f yy 
y 2

 2nd partial derivatives
 Z
2

 Z yx
yx 

2Z 
 Z xy
xy 
Z xy  Z yx

Ex.1
Z Z
If Z  x y , find ,
x y
Z Z
 y x y -1 y constant ,  x y  ln x  dy , x constant  power function
x y

Ex.2
y
If Z  tan 1 , show that Zyx  Z xy
x
1 y y
Zx   2  2
y 2
x x  y2
1 2
x
( x 2  y 2 )( 1)  y.2 y y2  x2
Z yx   2  (1)
( x 2  y 2 )2 ( x  y 2 )2

1
Mathematics: Lecture 12 ‫مدرس ازهار مالك‬
Partial Differentiations:

1 1 x
Zy    2
y x x  y2
2
1 2
x
( x  y 2 )(1)  x.2 x
2
y 2  x2
Z xy    (2)
( x 2  y 2 )2 ( x 2  y 2 )2

(1) & (2) are equal

Properties:

1) If   f ( ) ,   g( x, y)

   f  
  or  
x  x  x 

 chain rule
   
  
y  y 

2) If   f ( x, y) , x  g(r,s) , y  h(r,s) \

  x  y 
    
r x r y r


 chain rule
  x  y 
s    
r x s y s 

3) Total differential

If   f ( x, y, z,.....)
d  f x dx  f y dy  f z dz  ...
or d  x dx   y dy  z dz  ...

Ex.1
d
If   f ( x, y, z)  xyz  x2  y 2  z 2 , Find
dx
By property (3)

2
Mathematics: Lecture 12 ‫مدرس ازهار مالك‬
Partial Differentiations:

d   x dx   y dy   z dz
d  ( yz  2 x)dx  ( xz  2 y )dy  ( xy  2 z )dz
d dx dy dz
 ( yz  2 x)  ( xz  2 y )  ( xy  2 z )
dx dx dx dx

Ex.2
 2 2  
2
If   f ( x  ct)  g ( x  ct) .....(1) , Show that c
t 2 x 2
There are two methods to solve this Ex.

First method:

Let x  ct  r , x  ct  s
Eq.(1) becomes

  f (r )  g ( s ) .....(1)

 f (r ) r g ( s ) s
   
t r t s t
 f (r )  c  g ( s )  (c)

 2  f (r ) r   g ( s) s 
 c    c  
t 2
 r t   s t 

 c f (r )  c   cg ( s)  (c) 

 2
  c 2  f (r )   g ( s)  ...... (2)
t 2

 f (r ) r g ( s) s
   
x r x s x
 f (r )  1  g ( s)  1

 2
 f (r )  1  1  g (r )  1  1
x 2

In eq.(2)

 2 2  
2
 c
t 2 x 2

3
Mathematics: Lecture 12 ‫مدرس ازهار مالك‬
Partial Differentiations:

Second method:
t ‫) مباشرة بالنسبة لـ‬1( ‫نشتق معادلة‬


 f ( x  ct )  c  g ( x  ct)  (c)
t

 2
 f ( x  ct )  c  c  g ( x  ct )  (c)  (c)
t 2

 2
  c 2  f   g  ..... (2)
t 2


 f ( x  ct )  1  g ( x  ct )  1
x

 2
 f ( x  ct)  1  1  g ( x  ct)  1  1
x 2

 2
 2   f   g  ..... (3)
x

From (2) & (3)

 2 2  
2
 c
t 2 x 2

Ex.3
 y z z
If z  xn f   , Show that x  y  nz
x x y
z y y
x   x n 1  y f ( )  n x n  f ( ) ..... (1)
x x x

z y 1
 x n  f ( )  ( )  0
y x x
z y
y  x n 1  y f ( ) ..... (2)
y x

From (1) & (2)


z z y
x  y  nxn f ( )
x y x
 nz

4
Mathematics: Lecture 12 ‫مدرس ازهار مالك‬
Partial Differentiations:

Ex.4
 
Express and in terms of r & s if   x  2 y  z 2 ,
r s
r
x , y  r 2  ln s , z  2r
s

  x  y  z
     
r x r y r z r
1 1 1
 1   2  2r  2 z  2   4r  4 z  12r 
s s s

  x  y  z
     
s x s y s z s
r 1 r 2
 1 2  2   2z  0  2 
s s s s

Problems:

f f f
Find , ,
x y z
y
1) f ( x, y, z )  z sin -1
x
x(2 - cos2y)
2) f ( x, y , z ) 
x 2  y2

3) Find when

y
u0 ,   0 if   x 2 , x  u  2  1 , y  2u   - 2
x
 xy   
4) If   f  2  , show that x
2 
y 0
x y  x y
5) If   f ( x, y) , and x  r cos , y  r sin  , show that
 1 
( ) 2  2 ( ) 2  f x2  f y2
x r y

dz
6) If f ( x, y, z )  0 & z  x  y , find
dx
y
7) Find the directional derivative of f ( x, y )  x tan 1 at (1,1) in the
x
  
direction of A  2i  j
x2  y 2
8) In which direction is the directional derivative of f ( x, y)  2
x  y2

5
Mathematics: Lecture 12 ‫مدرس ازهار مالك‬
Partial Differentiations:

9) The D.D. of f ( x, y) at p0 (1,2) in the direction towards p1 (2,3) is


2 2 and the D.D. at p0 (1,2) towards p2 (1,0) is -3 , find D.D. at
p0 towards the origin.

References:

1- calculus & Analytic Geometry (Thomas).


2- Calculus (Haward Anton).
3- Advanced Mathematics for Engineering Studies )‫ رياض احمد عزت‬.‫(أ‬

You might also like