0% found this document useful (0 votes)
93 views5 pages

D Integral 1

The document defines the double integral and provides examples of evaluating double integrals over different regions. It also gives problems for evaluating double integrals. Some key points: 1) A double integral calculates the total over a region R of a function f of two variables. It can be evaluated by taking either horizontal or vertical slices. 2) Examples are provided of evaluating double integrals over regions such as a triangle, rectangle, and regions bounded by curves. 3) Problems are given at the end to evaluate additional double integrals over different regions.

Uploaded by

xz
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
93 views5 pages

D Integral 1

The document defines the double integral and provides examples of evaluating double integrals over different regions. It also gives problems for evaluating double integrals. Some key points: 1) A double integral calculates the total over a region R of a function f of two variables. It can be evaluated by taking either horizontal or vertical slices. 2) Examples are provided of evaluating double integrals over regions such as a triangle, rectangle, and regions bounded by curves. 3) Problems are given at the end to evaluate additional double integrals over different regions.

Uploaded by

xz
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

Double Integral : Lecture 5

‫ﻣﺪﺭﺱ ﺍﺯﻫﺎﺭ ﻣﺎﻟﻚ‬

Double Integral

Definition: let R be closed region in the (x, y )- plane. If f is a function


of two variables that is define on the region R, then the double integrals
on R is written by

n
Lim
n →∞
∑ f (x
r =1
r , y r )∆A r = ∫∫ f (x, y) dA
∆A r → 0 R

dydx ‫ﺍﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻤﻨﺤﻨﻴﺎﺕ ﺑﻬﺬﻩ ﺍﻟﺼﻴﻐﺔ ﻳﺆﺧﺬ ﺍﻟﻤﻘﻄﻊ ﺷﺎﻗﻮﻟﻲ‬

y2
b y2 R
∫∫ f (x, y) dA = ∫ ∫ f (x, y) dy dx
R a y1
y1

a b

dxdy ‫ﺍﻣﺎ ﺍﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻤﻨﺤﻨﻴﺎﺕ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﻟﻲ ﻳﺆﺧﺬ ﺍﻟﻤﻘﻄﻊ ﺍﻓﻘﻴﺎ‬

x1 x2
d
d x2
R
∫∫ f (x, y) dA = ∫ ∫ f (x, y) dxdy
R c x1
c

1
Double Integral : Lecture 5
‫ﻣﺪﺭﺱ ﺍﺯﻫﺎﺭ ﻣﺎﻟﻚ‬

Examples:
U

3 2
1) Evaluate ∫ ∫ (1 + 8xy )dydx
0 1

i) sketch: since dxdy ⇒ vertical


y =1 , y=2
ii)
3 2 3
y2 2
∫ ∫ (1 + 8xy )dydx = ∫ (y + 8x
0 1 0
) dx
2 1
3
= ∫ {1 + 12x} dx
0

x2 3
= ( x + 12 )
2 0
= (3 + 6(9)) - (0) = (3 + 54) = 57

∫∫ (2 x − y
2
2) Evaluate )dA over the triangular R enclosed by
R
y =1− x , y =1+ x , y=3

i) sketch:
y =1− x , y =1+ x
if x = 0 ⇒ y = 1 , if x = 0 ⇒ y = 1
if y = 0 ⇒ x = 1 , if y = 0 ⇒ x = −1
⇒ (0,1) & (1,0) , ⇒ (0,1) & (-1,0)

3 y −1
244
3 y −1

∫∫ (2 x − y )dA = ∫ ∫ (2 x − y )dxdy = ∫ ( x − y x) dy = 18 −
2 2 2 2

R 1 1− y 1 1− y 6

2
Double Integral : Lecture 5
‫ﻣﺪﺭﺱ ﺍﺯﻫﺎﺭ ﻣﺎﻟﻚ‬

2 1

∫∫
2
3) Evaluate ex dx dy
0 y
2
Reverse the order of integration

Since dxdy horizontal


y
x= ⇒ y = 2x
2
x =1
for y from 0 → 2
2 1 1 2x 1 2x

∫∫ dx dy = ∫ ∫ e x dy dx = ∫ e x y dx
2 2 2
ex
0 y 0 0 0 0
2

= e -1

ππ
sin x
4) Evaluate ∫∫
0 y
x
dx dy

From left x= y
y=π
From right x = π
value of y , from 0 ⇒ x
reverse the order

x=π
π π π x
sin x sin x
⇒ ∫∫
0 y
x
dx dy = ∫ ∫
0 0
x
dy dx

π π
sin x x sin x
=∫ ⋅ y dx = ∫ ⋅ x dx
0
x 0 0
x
= 2

5)
2 2 2 y

∫ ∫ 2y sin xy dydx = ∫ ∫ 2 y 2 sin xy dxdy


2

0 x 0 0

[ ]
2 2
= ∫ [− 2 y cos xy]0 dy = ∫ − 2 y cos y 2 + 2 y dy
y

0 0

[
= - sin y + y 2
]
2 2
0 = 4 − sin4

3
Double Integral : Lecture 5
‫ﻣﺪﺭﺱ ﺍﺯﻫﺎﺭ ﻣﺎﻟﻚ‬
0 x+2

6) Write an equivalent double of integration reversed ∫∫ (x 2 + y 2 )dy dx


−1 − x

0 x +2

∫∫ (x 2 + y 2 )dy dx (-1,1)
−1 − x
1 0 2 0
= ∫ ∫ (x 2 + y 2 )dxdy + ∫ ∫ (x
2
+ y 2 )dxdy
0 −y 1 y −2

7) Draw the region bounded by y=ex, y=sinx, x=π, x=-π P P

and evaluate its area.

π ex
A= ∫π ∫ dydx
− sin x
π
ex
= ∫ y sin x
−π

= eπ − e −π

8) Find the area bounded by y=-x, y=-3x and x=y+4.

Solution:

(2,-2)
−2 y + 4 0 −y

A= ∫ ∫
−3 − y
dxdy + ∫ ∫ dxdy
−2 − y
3 3 (1,-3)
−2 0
y+4 −y
= ∫x
−3
−4
3
dy + ∫ x −4 dy = 2
−2 3

4
Double Integral : Lecture 5
‫ﻣﺪﺭﺱ ﺍﺯﻫﺎﺭ ﻣﺎﻟﻚ‬

Problems
U

1 1 ln 2 1
x
∫∫ ∫ ∫
2
1) dydx 2) xy e y x
dydx
0 0
(xy + 1) 2 0 0

π x2 ln 8 ln y
1 y
3) ∫∫
π 0
x
cos dydx
x
4) ∫ ∫1 0
e x + y dxdy
2

2 2x 1π
x
5) ∫∫
1 x
y
dydx 6) ∫∫
0 0
y cos xy dxdy

π
4 2 2 sin θ

∫∫ ∫ ∫ r cos θ drdθ
3
7) e x dxdy 8)
0 y 0 0

9) Evaluate ∫∫ dA
R
, R: 1st quadrant bounded by y 2 = x & x 2 = y
P P

10) Evaluate ∫∫ xydA


R
, R: the region bounded by y 2 = x & y = x

1

∫∫ x(1 + y ) 2 dA , R: the region in the 1 quadrant enclosed by:
2 st
11) Evaluate P P

y = x2 , y = 4 , x = 0

∫∫ sin (y ) dA , R: the region bounded by y = x , y = 2 & x = 0


3
12) Evaluate
R

1 1
13) ∫∫
0 y
x 2 e xy dxdy

References
U

1- calculus & Analytic Geometry (Thomas).


2- Calculus (Haward Anton).
3- Advanced Mathematics for Engineering Studies (‫ ﺭﻳﺎﺽ ﺍﺣﻤﺪ ﻋﺰﺕ‬.‫)ﺃ‬

You might also like