REFERENCE
1. S. Prabha, V.L. Chandraboss, J. Kamalakannan and S. Senthilvelan*, UV-
Light assisted photodegradation and antibacterial activity of activated
charcoal supported cadmium doped ZnO nanocomposite material,
International Journal of Modern Research and Reviews, 2015,3, 587-
594.
2. S. Prabha, V.L. Chandraboss, J. Kamalakannan and S.
Senthilvelan*,Activated charcoal supported cadmium doped TiO2 for
photocatalytic and antibacterial applications,International Letters of
Chemistry, Physics and Astronomy,2015,5, 108-123.
3. Jean-Marie,1998, Composite Materials: mechanical behaviour and
Structural Analysis, mechanical engineering series,2,15
4. Thomas E. Twardowski, ADEstech Publications book (2007),
Introduction to nanocomposite materials: properties, processing,
characterization
5. Tan O.K., Cao W., Zhu W., Chai J.W., and Pan J.S. (2003). Ethanol
sensors based on nano-sized α-Fe2O3 with SnO2, ZrO2,TiO2 solid
solutions. Sens. Actuators B 93, 396–401.
6. V.L. Chandraboss, L. Natanapatham, B. Karthikeyan,
J. Kamalakkannan,S. Prabha and S. Senthilvelan*, Effect of bismuth
doping on the ZnO nanocomposite material and study of
itsphotocatalytic activity under UV-light, Materials Research
Bulletin,2013, 48, 3707-3712.
1
7. J. Kamalakkannan, V.L. Chandraboss, S. Prabha and S. Senthilvelan*,
Activated carbon loaded N, S co-doped TiO2 nanomaterial and its dye
wastewater treatment,International Letters of Chemistry, Physics and
Astronomy,2015, 8, 147-164
8. B.J. Scott, G. Wirnsberger and G.D. Stocky, Chem. Mater.,2001, 13,
3140.
9. M. Maitri, Ph.D. Thesis, University of Pune, 2009.
10. G.C. Mather and A. Martinez-Arias, In: J.A. Rodriguez and M.
Fernandez-Garcia (Eds.), Synthesis, Properties and Applications of Oxide
Nanoparticles, Chapter 13,Wiley, New Jersey, 2007.
11. Y.M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller and J.H. Ying, J.
Electroceram.,1997, 1, 7.
12. B.M. Reddy, Redox Properties of Oxides, In: J.L.G. Fierro (Ed.), Metal
Oxides,CRC Press, Boca Raton, 2006.
13. G. Busca, The Surface Acidity and Basicity of Solid Oxides and Zeolites,
In: J.L.G. Fierro (Ed.), Metal Oxides,CRC Press, Boca Raton, 2006, p.
247.
14. C. Kutal, Coord. Chem. Rev.,1985, 64, 191.
15. H. Kisch, What is Photocatalysis? In: N. Serpone and
E. Pelizzetti (Eds.), Photocatalysis: Fundamentals and Applications,
John Wiley and Sons, Inc., New York, 1989, p.1.
16. A.O. Ibhadon, Multifunctional TiO2 Catalysis and Applications.In:
Proceedings of Green Chemistry and Engineering International
Conference, Washington, DC, USA, 2008, p. 24.
2
17. M. Cho, H. Chung, W. Choi and J. Yoon, Water Res.,2004, 38,
1069.
18. E. Evgenidou, K. Fytianos and I. Poulios, J. Photochem. Photobiol A,2005,
175, 29.
19. Viswanathan B. (2006), Electro-catalytic/electrochemical
applications of Polyoexometalates, National Centre for Catalysis
Research
20. V.L. Chandraboss, J. Kamalakkannan, S. Prabha and S. Senthilvelan*,An
efficient removal of methyl violet from aqueous solution by an AC-
Bi/ZnO nanocomposite material, RSC Advances,2015, 5, 25857-
25869.
21. A.L. Linsebigler, G. Lu and J.T. Yates Jr, Chem. Rev.,1995,
95, 735.
22. V. Diesen, C.W. Dunnill, E. Osterberg, I.P. Parkin and M.
Jonsson,Dalton Trans.,2014, 43, 344.
23. P.V. Kamat, J. Phys. Chem. Lett.,2010, 1, 520.
24. W.Y. Teoh, R. Amal and J. Scott, J. Phys. Chem. Lett.,2012, 3, 629.
25. L.M. Liz-Marzan and P. Mulvaney, J. Phys. Chem. B,2003, 107,
7312.
26. P. Mulvaney, Langmuir,1996, 12, 788.
27. I. Pastoriza-Santos, D.S. Koktysh, A.A. Mamedov, M. Giersig, N.A.
Kotov and L.M. Liz-Marzan, Langmuir,2000, 16, 2731.
28. X.S. Li, G.E. Fryxell, M.H. Engelhard and C. Wang, Inorg. Chem.
Commun.,2007, 10, 639.
3
29. Y. Shin, B.W. Arey, C.M. Wang, X.S. Li, M.H. Engelhard and
G.E. Fryxell, Inorg. Chem. Commun.,2007, 10, 642.
30. J.L.F.a.W. Wang, Carbon Materials for in Photocatalysis.In: J.L.F.
Philippe Serp (Ed.), Carbon Material for Catalysis, John Wiley and
Sons, Inc., 2009.
31. R. Leary and A. Westwood, Carbon,2011, 49, 741.
32. Z.G. Zou, J.H. Ye, K. Sayama and H. Arakawa, Nature,2001, 414,
625.
33. J.H. Park, S. Kim and A.J. Bard, Nano Lett.,2006, 6, 24.
34. L.R. Radovic and C. Sudhakar, Carbon as a Catalyst Support:
Production, Properties and Applications. In: H. Marsh, E.A. Heintz,F.
Rodriguez-Reinoso (Eds.), Introduction to Carbon Technologies,
University of Alicante Press, Alicante, Spain, 1997, p. 103.
35. A. Kubacka, M.F. Garcia and G. Colon, Chem. Rev.,2012, 112, 1555.
36. N. Wang, D. Kong and H. He, Powder Technol.,2011, 207, 470.
37. H. Usni, J. Colloid Interf. Sci., 2009, 336, 667.
38. N. Sobana and M. Swaminathan, Sol. Energy Mater. Sol. Cells,2007,
91, 727.
39. H. Zhang, R. Zhong and Y. Zhu, J. Phys. Chem. C,2009, 113, 4605.
40. V. Etacheri, R. Roshan and V. Kumar, ACS Appl. Mater.
Interf.,2012, 4, 2717.
41. M.M. Rashad, A.A. Ismail, I. Osama, I.A. Ibrahim and A.H.T.
Kandil, Arabian J. Chem.,2014, 7, 71.
4
42. K. Milenova, I. Stambolova, V. Blaskov, A. Eliyas, S. Vassilev and M.
Shipochka, J. Chem. Technol. Metall.,2013, 48, 3.
43. I.E. Paulauskas and D.R. Modeshia, Platinum Metals Rev.,
2013, 57, 32.
44. R. He, R.K. Hocking and T. Tsuzuki, J. Australian Ceram. Soc.,2013,
49, 70.
45. M. Safari, R. Talebi, M.H. Rostami, M. Nikazar and M. Dadvar, J.
Environ. Hlth. Sci. Eng., 2014, 12, 19.
46. T. Welderfael, O.P. Yadav, A.M. Taddesse and J. Kaushal,
Bull. Chem. Soc. Ethiop., 2013, 27, 221.
47. R. Nainani, P. Thakur and M. Chaskar, J. Mater. Sci. Eng. B,2012,
2, 52.
48. S. Senthilvelan V.L. Chandraboss, L. Natanapatham, B. Karthikeyan, J.
Kamalakkannan and S. Prabha, Mater. Res. Bull.,2013, 48,
3707.
49. W.C. Oh, Environ. Eng. Res.,2008, 13, 85.
50. H. Yuan and J. Xu, Int. J. Chem. Eng. Appl.,2010, 1, 241.
51. K. Cendrowski, X. Chen, B. Zielinska, R.J. Kalenczuk, M.H.
Rummeli, B. Buchner, R. Klingeler and E. Borowiak-Palen, J.
Nanopart. Res.,2011, 13, 5899.
52. L. Wang, L. Shen, L. Zhu, H. Jin, N. Bing and L. Wang, J.
Nanomater.,2012, 2012, 1.
53. Z. He and J. Zhou, Modern Res. Catal.,2013, 2, 13.
5
54. D. Greene, R. Serrano-Garcia, J. Govan and Y.K. Gun’ko,
Nanomaterials,2014, 4, 331.
55. A. Eslami, S. Nesseri, B. Yadollahi, A. Mesdaghinia, F. Vaezi,
R. Nabizadeh and S. Nazmara, J. Chem. Technol. Biotechnol.,2008,
83, 1447.
56. R.J. Davis and J.L. Gainer, Water Environ. Res.,1994, 66, 50.
57. K. Balantrapu and D. Goia, J. Mater. Res.,2009, 24, 2828.
58. R.M. Tripathi, A. Saxena, N. Gupta, H. Kapoor and R.P. Singh,
Digest J. Nanomater. Bios.,2010, 5, 323.
59. R. Patakfalvi and I. Dekany, Colloid Polym. Sci.,2010, 280, 461.
60. L. Rodriguez-Sanchez, M.C. Blanco and M.A. Lopez-Quintela, J.
Phys. Chem. B,2000, 104, 9683.
61. A. Taleb, C. Petit and M.P. Pileni, J. Phys. Chem. B,1998, 102, 2214.
62. M. Singh, S. Manikandan and A.K. Kumaraguru, Res. J.
Nanosci.Nanotechnol.,2011, 1, 1.
63. T.M. Lopez Goerne, M.A. Alvarez Lemus, V.A. Morales, E.G. Lopez and
P.C. Ocampo, J. Nanomed. Nanotechol.,2012, S5:003.
64. G.J. Nohynek, J. Lademann, C. Ribaud and M.S. Roberts, Crit.
Rev. Toxicol.,2007, 37, 251.
65. G.J. Nohynek, E.K. Dufour and M.S. Roberts, Skin Pharmacol.
Physiol.,2008, 21, 136.
66. N. Padmavathy and R. Vijayaraghavan, Sci. Technol. Adv. Mater.,
2008, 9, 035004.
6
67. V. Wagner, A. Dullaart, A.K. Bock and A. Zweck, Nat.
Biotechnol.,2006, 24, 1211.
68. D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit and R.
Langer, Nat. Nanotechnol.,2007, 2, 751.
69. R.M. Dolan, Emerg. Infect. Dis.,2001, 7, 227.
70. K. Vasilev, J. Cook and H.J. Griesser, Expert Rev. Med.
Devices,2009, 6, 553.
71. N. George, J. Faoagali and M. Muller, Burns,1997, 23, 493.
72. K.R. Raghupathi, R.T. Koodali and A.C. Manna, Langmuir,2011, 27,
4020.
73. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian and
G. Manivannan, Nanomed. Nanotechnol. Biol. Med.,2011, 7, 184.
74. A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. Gedanken
and R. Lubart, J. Phys. Chem. C,2009, 113, 15997.
75. R.K. Dutta, B.P. Nenavathu, M.K. Gangishetty and A.V.R. Reddy,Coll.
Surf. B,2012, 94, 143.
76. Y. Li, W. Zhang, J. Niu and Y. Chen, ACS Nano,2012, 6, 5164.
77. J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T.
Kokugan and M. Shimizu, J. Chem. Eng. Jpn.,1996, 29, 627.
78. A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. C,2000,1,
1.
79. M. Gratzel, Nature,2001, 414, 338.
80. A. Alivisatos, Sci. Total Environ.,1996, 271, 933.
81. A. Fujishima and K. Honda, Nature,1972, 238, 37.
7
82. K. Hashimoto, A. Fujishima and T. Watanabe, TiO2 Photocatalysis
Fundamentals and Applications, BKC Inc., Tokyo, Japan, 1999.
83. A. Yiannikouris, J. Francois, L. Poughon, C.G. Dussap, G. Bertin,G.
Jeminet and J.P. Jouany, J. Agric. Food Chem.,2004, 52, 3666.
84. O. Seven, B. Dindar, S. Aydemir, D. Metin, M.A. Ozinel and
S. Icli, J. Photochem. Photobiol. A,2004, 165, 103.
85. A. Erkan, U. Bakir and G. Karakas, J. Photochem. Photobiol. A,2006,
184, 313.
86. C. Tatsuyama, and S. Ichimura, Jpn. J. Appl. Phys.,1976, 15, 843.
87. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka,
Science,1997, 276, 1395.
88. Baksi S., Basak P.R., Biswas S. Nanocomposites-technology trends
& application potential
89. V.L. Chandraboss, B. Karthikeyan, J. Kamalakkannan, S. Prabha and
S. Senthilvelan*, Sol-Gel synthesis of TiO2/SiO2 and ZnO/SiO2
composite films and evaluation of their photocatalytic activity
towards methyl green,Journal of Nanoparticles,2013.
90. J. Kamalakkannan, V.L. Chandraboss, S. Prabha and S. Senthilvelan*,
Advanced construction of heterostructured InCrO4-TiO2 and its dual
properties of greater UV-photocatalytic and antibacterial activity,RSC
Advances,2015, 5, 77000-77013.
91. W.L. Bragg, Proc. Cambridge Philos. Soc.,1913, 17, 43.
92. P. Debye and P. Scherrer, Physik. Z.,1917, 27, 277.
93. A.W. Hull, Phys. Rev.,1917, 9, 84.
8
94 L.X. Zhang et al, Polym. Degrad. Stab., 2006, 91, 2213.
95 BP. Gomes et al, Braz Dent J., 2002, 13, 155.
96 Rw. Bauer, Am J Clin Pathol., 1966, 45, 493.
97 J. Javanmardi et al, Food Chem., 2003, 83, 547.
98 D. Das et al, Colloids Surf. B., 2013, 101, 430.
99 Guinier, A (1963). X-ray diffraction in crystals, Imperfect crystal and
Amorphous Bodies. San Francisco: W.H Freeman & Co.
100 Z. Antic, R.M. Krsmanovic, M.G. Nikolic, M.M. Cincovic, M. Mitric,S.
Polizzi and M.D. Dramicanin, Mat. Chem. Phys.,2012, 135,1064.
101 M. Ba-Abbad, A.H. Kadhum, A. Mohamad, M.S. Takriff and
K. Sopian, Int.J. Electrochem. Sci., 2012,7, 4871.
102 M. Athar and A.J. Das, Adv. Mater. Rev., 2014, 1, 25.
103 H.T. Chang, N.M. Wu and F. Zhu, Water Res., 2000, 34, 407.
104 S.C. Yan, S.X. Ouyang, J. Gao, M. Yang, J.Y. Feng, X.X. Fan, L.J.
Wan, Z.S. Li, J.H. Ye and Y. Zhou, Angew. Chem. Int. Ed.,2010, 122,
6544.
105 S.D Russell., C.P. Daghlin, Jr Electrom microscopy Technique.,
1985, 2(5), 489.
106 J.P Hindmarsh., A.B.Rusell.,X.D.Chen., Journal of Food
Enginering., 2007, 78, 136
107 M.Christopen., Microscoy Today. 2018, 26, 12
9
108 W.S. Lau.,Infrared characterization of microelectronics., ISBN 978-
981-02-202352-6.
109 G. Brain Osborne,.Near-Infrared Spectroscopy in Food analyasis.,
2006.,ISBN.9780470027318.
110 S. Balachandran et al, Ind. Eng. Chem. Res. 2014, 53, 8346.
111 S. Balachandran et al, RSC Adv., 2014, 4, 4353.
112 K. Ameta et al, Sci. Rev. Chem. Commun., 2014, 4, 38.
113 B. Subash et al, Langmuir., 2013, 29, 939.
114 N. Daneshvar et al, Int. J. Chem. Nucl. Metall. Mater. Eng., 2007, 1,
62.
115 W.K. Choy and W. Chu, Chemosphere., 2007, 66, 2106.
116 A. Gusfiyesi et al, Res. J. Pharm., Biol. Chem. Sci., 2014, 5, 918.
10