INTEGRATED CIRCUITS
DATA SHEET
SAA5191
Teletext video processor
Preliminary specification March 1991
File under Integrated Circuits, IC02
Philips Semiconductors Preliminary specification
Teletext video processor SAA5191
FEATURES GENERAL DESCRIPTION
• Adaptive data slicer The SAA5191 is a bipolar integrated circuit that extracts
• Crystal-controlled data clock regeneration with a bit rate teletext data from the video signal (CVBS), regenerates
the teletext clock (TTC) and synchronizes the text display
of 6.9375 MHz
to the television signals (VCS). This device operates in
• Adaptive sync separator, horizontal phase detector and conjunction with the Digital Video Teletext (back-end)
13.5 MHz VCO to provide display phase locked loop Decoder (DVTB - SAA9042A) or any other compatible
(PLL) device.
• TV synchronization at teletext mode
QUICK REFERENCE DATA
SYMBOL PARAMETER MIN. TYP. MAX. UNIT
VP supply voltage (pin 16) − 12 − V
IP supply current − 70 − mA
Vi CVBS CVBS input signal on pin 27 (peak-to-peak value)
at pin 2 LOW − 1 − V
at pin 2 open-circuit − 2.5 − V
Vo outputs signals TTC and TTD 2.5 3.5 4.5 V
(peak-to-peak value, pins 14, 15)
VF13 13.5 MHz clock output signal 1 2 3 V
(peak-to-peak value pin 17)
VSYNC video sync output signal (peak-to-peak value, pin 1) − − 1 V
SYNC output signal TCS 200 450 650 mV
VCS video composite sync level on output pin 25
LOW − − 0.4 V
HIGH 2.4 − 5.5 V
Tamb operating ambient temperature 0 − +70 °C
ORDERING AND PACKAGE INFORMATION
EXTENDED TYPE PACKAGE
NUMBER PINS PIN POSITION MATERIAL CODE
SAA5191 28 DIL plastic SOT117(1)
Note
1. SOT117-1;1996 November 14
March 1991 2
March 1991
handbook, full pagewidth
VP
VCS PL CBB VP
+12 V
Philips Semiconductors
25 24 23 22 10 21 19 20 18 16 F13
(13.5 MHz
28 HORIZONTAL
TCS PULSE 17 clock)
PHASE VCO
GENERATOR
DETECTOR
Teletext video processor
SENSE
"NO INPUT"
SAA5191 ADAPTIVE 15 TTD
DATA LATCHES
composite SLICER (data)
video
input 27 ADAPTIVE DUAL
SYNC POLARITY
SEPARATOR BUFFER CLOCK
PHASE TTC
14
3
26 DETECTOR
(clock)
SENSE
"NO LOAD" 12
SENSE PHASE
EXTERNAL SHIFTER
DATA
GAIN HF LOSS OSCILLATOR
SWITCH COMPENSATOR DIVIDER
VP
BY 2
2 3 4 1 5 6 8 7 9 11 13
GND
set video XTAL
input level VP data 13.875 MHz
set sync input MEH149
sync output polarity
Fig.1 Block diagram.
SAA5191
Preliminary specification
Philips Semiconductors Preliminary specification
Teletext video processor SAA5191
PINNING PIN CONFIGURATION
SYMBOL PIN DESCRIPTION
STTV 1 sync output signal to TV (positive or negative going)
VILS 2 level select input of video input (LOW equals 1 V)
Cfilt 3 video filtering capacitor of HF loss compensation
Cstore 4 HF storage capacitor
Campl 5 amplitude capacitor
fpage
Czero 6 zero level capacitor STTV 1 28 TCS
EXD 7 external data current input (note 1) VILS 2 27 CVBS
Ctime 8 data timing capacitor for the adaptive data slicer
Cfilt 3 26 CBL
CCLK 9 clock phase detector capacitor
Cstore 4 25 VCS
CBB 10 blanking insertion input
Campl 5 24 CT
XTAL 11 13.875 MHz crystal (double of data rate)
CLF 12 6.9375 MHz clock frequency filter Czero 6 23 RT
GND 13 ground (0 V) EXD 7 22 PL
SAA5191
TTC 14 teletext clock output (for computer controlled teletext) Ctime 8 21 Chor
TTD 15 teletext data output (for computer controlled teletext) CCLK 9 20 OSCI
VP 16 +12 V supply voltage
CCB 10 19 CVCR
F13 17 13.5 MHz VCO output (for sandcastle generation)
XTAL 11 18 OSCO
OSCO 18 oscillator output to series LC-circuit or crystal
CLF 12 17 F13
CVCR 19 short time constant capacitor at video recorder mode
(note 2) GND 13 16 VP
OSCI 20 oscillator input from series LC-circuit or crystal TTC 14 15 TTD
Chor 21 horizontal phase capacitor / VCR mode
MEH150
PL 22 sandcastle input (generated in CCT)
RT 23 timing resistor for pulse generator
CT 24 timing capacitor for pulse generator
VCS 25 video composite sync output to CCT
CBL 26 black level capacitor
CVBS 27 composite video input signal from TV Fig.2 Pin configuration.
TCS 28 text-composite/scan-composite sync input (TSC/SCS)
Notes
1. Sliced teletext data from external: active HIGH level (current), low
impedance input.
2. While the loop is locking up.
March 1991 4
Philips Semiconductors Preliminary specification
Teletext video processor SAA5191
LIMITING VALUES
In accordance with the Absolute Maximum System (IEC 134).
SYMBOL PARAMETER MIN. MAX. UNIT
VP supply voltage (pin 16) 0 13.2 V
V5 voltage on pin 5 0 5.5 V
Tstg storage temperature range −20 125 °C
Tamb operating ambient temperature range 0 +70 °C
CHARACTERISTICS
VP = 12 V; Tamb = 25 °C and measurements taken in Fig.3, unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
VP supply voltage range (pin 16) 10.8 12.0 13.2 V
IP supply current 50 70 105 mA
Video input, sync separator and data slicer ZS ≤ 250 Ω
Vi CVBS input signal sync to white V2 = LOW 0.7 1 1.4 V
(peak-to-peak value, pin 27)
V2 = HIGH 1.75 2.5 3.5 V
sync amplitude (peak-to-peak value) 0.1 − 1 V
data slicing level V2 = LOW 0.3 0.46 0.7 V
V2 = HIGH 0.75 1.15 1.75 V
V2 input voltage LOW (pin 2) 0 − 0.8 V
input voltage HIGH open-circuit equals HIGH 2.0 − 5.5 V
I2 input current LOW 0 − −150 µA
input current HIGH V2 < 5.5 V 0 − 1 mA
Teletext data output (TTD)
V22 phase lock pulse (PL) input voltage phase locked 0 − 3 V
(peak-to-peak value, pin 22)
phase unlocked 3.9 − 5.5 V
Vo TTD data output signal on pin 15 2.5 3.5 4.5 V
(peak-to-peak value)
V15 DC output voltage mean level 3 4 5 V
CL load capacitance on pin 15 − − 40 pF
t r, t f rise and fall time 20 30 45 ns
Teletext clock output (TTC)
Vo TTC clock output signal on pin 14 2.5 3.5 4.5 V
(peak-to-peak value)
V14 DC output voltage mean level 3 4 5 V
CL load capacitance on pin 14 − − 40 pF
t r, t f rise and fall time 20 30 45 ns
td delay time of falling edge relative to − − ± 20 ns
other edges of TTD
March 1991 5
Philips Semiconductors Preliminary specification
Teletext video processor SAA5191
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Text/ scan composite sync input (TCS/SCS)
V28 input voltage LOW for TCS (pin 28) 0 − 0.8 V
input voltage HIGH for TCS 2.0 − 7.0 V
input voltage LOW for SCS 0 − 1.5 V
input voltage HIGH for SCS 3.5 − 7.0 V
I28 input current V28 = 0 to 7 V −40 −70 −100 µA
V28 = 10 to VP − − ±5 µA
SYNC output buffer
Vo CVBS sync output signal on pin 1 RL 1 = 1.2 kΩ to VP − − 1 V
(peak-to-peak value)
TCS output signal RL 1 = 1.2 kΩ to GND 200 450 650 mV
V1 DC output voltage at positive sync signal RL 1 = 1.2 kΩ to GND 1.0 1.4 2.0 V
DC output voltage at negative sync signal RL 1 = 1.2 kΩ to VP 9.0 10.1 11.0 V
I1 output current − − ±3 mA
Video composite sync output (VCS)
V25 output voltage LOW (pin 25) 0 − 0.4 V
output voltage HIGH 2.4 − 5.5 V
I25 output current LOW 0 − 0.5 mA
output current HIGH 0 − −1.5 mA
td sync separator delay time 250 350 400 ns
Horizontal phase detector and 13.5 MHz VCO
V10 input voltage LOW (CBB), pin 10 blanking inserted 0 − 0.5 V
blanking insertion HIGH no blanking 1.0 − 5.5 V
I10 input current − − −5 µA
Vo 13.5 MHz clock output signal 1 2 3 V
(peak-to-peak value, pin 17)
V17 DC output voltage maximum swing 4 − 8.5 V
CL load capacitance on pin 17 − − 40 pF
t r, t f rise and fall time 10 − 30 ns
March 1991 6
Philips Semiconductors Preliminary specification
Teletext video processor SAA5191
handbook, full pagewidth
47 µF 47 nF
82 Ω 3.3 kΩ
47 nF 47 nF VP = 12 V
15 µF 22 nF
+12 V
TCS
PL
VCS
1 nF
470
Ω
15 F13
2.2 µF 68
6.8
68 220 kΩ µH 10 nF
CVBS pF TTD
nF pF
(1) (2)
28 27 26 25 24 23 22 21 20 19 18 17 16 15
(4)
SAA5191 27 15
pF µH
1.2
kΩ
1 2 3 4 5 6 7 8 9 10 11 12 13 14
sync
15 470 270 100 13.875
video 1 22 TTC
pF pF pF XTAL MHz
pF nF nF
input (3)
1.2 kΩ level
15
select
pF
data
CBB
input
XTAL (2) MEH156
additional drawing
for crystal application 13.5
47 47 22
nF MHz nF pF
21 20 19 18
SAA5191
(1) inductance 15 µH at 1 kHz, Co = 2.2 pF. Adjust free-running frequency to 13.5 ± 0.1 MHz or apply 13.5 MHz quartz crystal
as shown in additional drawing
(2) Crystal: f = 13.5 MHz (e.g. Philips catalogue number 4322 143 04101); adjustment tolerance ±40 × 10−6;
load capacitance CL = 22 pF; resonance resistance Rr = 22 pF; typical motional capacitance C1 = 23 fF;
static parallel capacitance C0 = 5.5 pF; frequency tolerance ±30 × 10−6 in temperature range T = −20 to +70°.
Adjust free-running frequency to 13.5 ± 0.5 MHz.
(3) Crystal: f = 13.875 MHz; adjustment tolerance ±40 × 10−6; load capacitance CL = 15 pF;
typical resonance resistance Rr = 15 Ω (maximum 60 Ω); typical motional capacitance C1 = 19 fF;
static parallel capacitance Co = 5 pF; frequency tolerance ±30 × 10−6 in temperature range T = −20 to +70°.
(4) Coil: Fixed inductance 15 µH ±20%, quality factor Q > 20.
Fig.3 Test circuit and application circuit using LC-circuit or a crystal for VCO (clock F13).
March 1991 7
Philips Semiconductors Preliminary specification
Teletext video processor SAA5191
PACKAGE OUTLINE
DIP28: plastic
handbook, full pagewidthdual in-line package; 28 leads (600 mil) SOT117-1
seating plane
D ME
A2 A
L A1
c
Z e w M
b1
(e 1)
b
28 15 MH
pin 1 index
1 14
0 5 10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
A A1 A2 Z (1)
UNIT max. min. max. b b1 c D (1) E (1) e e1 L ME MH w max.
1.7 0.53 0.32 36.0 14.1 3.9 15.80 17.15
mm 5.1 0.51 4.0 2.54 15.24 0.25 1.7
1.3 0.38 0.23 35.0 13.7 3.4 15.24 15.90
0.066 0.020 0.013 1.41 0.56 0.15 0.62 0.68
inches 0.20 0.020 0.16 0.10 0.60 0.01 0.067
0.051 0.014 0.009 1.34 0.54 0.13 0.60 0.63
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE REFERENCES EUROPEAN
ISSUE DATE
VERSION IEC JEDEC EIAJ PROJECTION
92-11-17
SOT117-1 051G05 MO-015AH
95-01-14
March 1991 8
Philips Semiconductors Preliminary specification
Teletext video processor SAA5191
SOLDERING
Introduction
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and
surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for
surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often
used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our
“IC Package Databook” (order code 9398 652 90011).
Soldering by dipping or by wave
The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the
joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the
specified maximum storage temperature (Tstg max). If the printed-circuit board has been pre-heated, forced cooling may
be necessary immediately after soldering to keep the temperature within the permissible limit.
Repairing soldered joints
Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more
than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to
10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.
DEFINITIONS
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
March 1991 9