1) laplace inverse of s/(s^2+a^2)^2 --> in notes
2) convolution theorem of the Laplace inverse of s/(s^2+1)(s^2+4)
https://www.quora.com/How-do-I-do-the-convolution-theorem-of-the-Laplace-inverse-of-s-s-2+1-s-2+4
3) Inverse Laplace of s/s^4+s^2+1
https://www.youtube.com/watch?v=45opyCFuCIk&t=11s
4)
https://www.youtube.com/watch?v=7uHkfustHo4
5) Solve dy/dt+x=cos t dx/dt+y=sin t x(0)=2 y(0)=0
s2 +s−2
6) Evaluate L-1
{ s( s+3 )(s−2 ) }
s2 +s−2
Evaluate L-1
{ s( s+3 )(s−2 ) }
s2 +s−2
Solution: To find L-1
{ s( s+3 )(s−2 ) }
s2 +s−2 B
By partial fractions, L-1
{ s( s+3 )(s−2 ) } L-1
{}A
s
L-1
{ }
( s+3 )
L-1
C
{ }
( s−2)
1 4 2
3 ; B = 15 ; C = 5
We get A =
s2 +s−2 4 2
L-1
{ s( s+3 )(s−2 ) } L-1
1
{ }
3s
L-1
{
15 (s+3) } L-1
{ 5( s−2) }
1 1
1
3
L-1
{1s }
4
15
L-1
{ }
( s+3 )
2
5
L-1
{ }
( s−2)
1 4 2
3 15 5
e-3t e2t
s2 +s−2
L-1
{ s( s+3 )(s−2 ) }
1
3
4
15
e-3t
2
5
e2t is required solution.
7) Using Laplace Transform , Solve y"-3y`+2y = e^3x where y(0)=0 y`(0)=0
https://www.youtube.com/watch?v=A5qYTcssOPY