0% found this document useful (0 votes)
98 views15 pages

IB Math HL: Sequences & Series

This document contains a math test on sequences, binomials, and induction with 6 questions. It asks the student to find sums of arithmetic and geometric sequences, determine possible values for infinite series to converge, calculate share values that decrease by a percentage each day, and other related problems. The test is marked out of 100 points and broken into individual questions each worth a specified maximum number of marks.

Uploaded by

Reema Gupta
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
98 views15 pages

IB Math HL: Sequences & Series

This document contains a math test on sequences, binomials, and induction with 6 questions. It asks the student to find sums of arithmetic and geometric sequences, determine possible values for infinite series to converge, calculate share values that decrease by a percentage each day, and other related problems. The test is marked out of 100 points and broken into individual questions each worth a specified maximum number of marks.

Uploaded by

Reema Gupta
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 15

HAEF IB - MATH HL

TEST 1
SEQUENCES – BINOMIAL - INDUCTION
by Christos Nikolaidis

Marks:____/100
Name:____________________________________

Date:________________ Grade: ______

Questions

1. [Maximum mark: 6]
Find in terms of a the following results
20 20 20

∑ ak
k =1
∑ (ak + 1)
k =1
∑ ak
k =10
[6 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

1
2. [Maximum mark: 6]
(a) Find the value of sum
39 + 48 + 57 + 66 + L + 246. [3 marks]
n
(b) This sum can be expressed in the form ∑ (ak + b) .
k =1

Find the values of a, b and n. [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

2
3. [Maximum mark: 6]
Consider the infinite geometric series
1 1 3
− 2
+ +L
3k 3 6k 12k 3
(a) Find the possible values of k given that the series converges. [4 marks]
(b) Find the exact value of the infinite sum for k = 1. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

3
4. [Maximum mark: 7]
In an arithmetic sequence the sum of the first six terms is 75 and the sum of
the first ten terms is 185.
(a) Find the sum of the first eight terms. [5 marks]
(b) Find the number of terms which are less than 1000. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

4
5. [Maximum mark: 5]
The third term of an infinite geometric sequence is –108 and the fifth term is –72.
Find the possible values for the sum to infinity of the sequence.

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

5
6. [Maximum mark: 7]
The value of a share decreases by 2% each day. Its value today is 680€.
Find
(a) the value of the share after 9 days. [2 marks]
(b) the value of the share 10 days ago. [2 marks]
(c) after how many days the value of the share will fall below 400€ [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

6
7. [Maximum mark: 8]
(a) In an arithmetic sequence, the sum of the first ten terms is equal to the tenth
term. Find S 9 and u 5 . [5 marks]

(b) The third term of an arithmetic sequence is 7. Find S 5 [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

7
8. [Maximum mark: 6]
The sum of the first n terms of a series is given by
S n = n 3 + n where n ∈ +.
(a) Find the first three terms of the sequence and show that it is
neither arithmetic nor geometric. [4 marks]
(b) Find the 10th term of the sequence. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

8
9. [Maximum mark: 8]
(a) Consider the expansion of
8
 3 3
x − 
 x
Find
(i) Find the constant term.
(ii) Find the term in x 4 . [5 marks]

(b) Consider now


8
 3 3
 x −  3x − 2
2
( )
2

 x
Find the term in x 4 . [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................
9
10. [Maximum mark: 6]
In the expansion of
n
 3
x 3 1 − 
 x
the constant term is – 3240. Find
(a) the value of n. [4 marks]
(b) the coefficient of x. [2 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................
10
11. [Maximum mark: 8]
The distinct numbers
x + 9y , x + 3y , x
are the first three terms of a geometric sequence.
(a) Find the common ratio. [5 marks]
(b) Given that the sum to infinity is 48, find the values of x and y. [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

11
12. [Maximum mark: 12]
1 2 3 n
Let Sn = + + + L +
2! 3! 4! (n + 1)!
(a) Calculate S1 , S 2 , S 3 , S 4 [2 marks]
(b) Write down the values of 1!, 2!, 3!, 4!, 5! [2 marks]
(c) Hence, guess a formula for S n , for any n ∈ Z + [1 mark]
(d) Show by using mathematical induction that your guess is true. [7 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

12
.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

13
13. [Maximum mark: 15]
(a) Express ( 3+ 2 ) 3
in the form a 2 + b 3 where a, b ∈ Z + [2 marks]
(b) Express ( 2) ( )
2 4
3+ and 3+ 2 in the form a + b 6 ,
+
where a, b ∈ Z [3 marks]
+
(c) By using mathematical induction, show that, for any n ∈ Z
( 3+ 2 )
2n
has the form a + b 6 , where a, b ∈ Z + [7 marks]
(d) Hence show that, for any n ∈ Z +
( 3+ 2 )
2 n +1
has the form a 2 + b 3 , where a, b ∈ Z + [3 marks]

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

14
.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................

.....................................................................
15

You might also like