0% found this document useful (0 votes)
43 views11 pages

Paper 1 Practice Set B

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
43 views11 pages

Paper 1 Practice Set B

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

124 Practice exam papers

Mathematics: analysis and approaches


Higher level
Paper 1 Practice Set B

Candidate session number

2 hours
__________________________________________________________________________________________
Instructions to candidates
• Write your session number in the boxes above.
• Do not open this examination paper until instructed to do so.
• You are not permitted access to any calculator for this paper.
• Section A: answer all questions. Answers must be written within the answer boxes provided.
• Section B: answer all questions in an answer booklet.
• Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three
significant figures.
• A copy of the mathematics: analysis and approaches formula book is required for this paper.
• The maximum mark for this examination paper is [110 marks].

© Hodder Education 2020


Practice exam papers 125

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by
working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method,
provided this is shown by written working. You are therefore advised to show all working.
Section A
Answer all questions. Answers must be written within the answer boxes provided. Working may be continued
below the lines, if necessary.
1 [Maximum mark: 7]
a 4x
Find the value of a > 0 such that ∫0 2 dx = ln16.
x +3

.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
126 Practice exam papers

2 [Maximum mark: 6]
The box plot summarizes the times taken by a group of 40 children to complete an obstacle course.
7 9.5 12.3 17.5 19.6

5 10 15 20
time (minutes)
Two of the 40 children are selected at random.
a Find the probability that both children completed the course in less than 9.5 minutes. [3]
b Find the probability that one child completed the course in less than 9.5 minutes and the
other in between 9.5 and 17.5 minutes. [3]

.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
Practice exam papers 127

3 [Maximum mark: 5]
Find the equation of the normal to the graph of y = sinx x at the point where x = π.

.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
128 Practice exam papers

4 [Maximum mark: 5]
Solve the inequality |x – 3| < |2 x + 1|.

.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
Practice exam papers 129

5 [Maximum mark: 6]
Given that P(A) = 0.3, P(B|A) = 0.6 and P(A ∪ B) = 0.8, find P(A|B). Give your answer as a simplified fraction.

.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
130 Practice exam papers

6 [Maximum mark: 6]
The graph in the diagram has equation y = A + Be– .kx

2
x

y = 1

Find the values of A, B and k.

.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
Practice exam papers 131

7 [Maximum mark: 6]
Use mathematical induction to prove that 7 + 3 – 1 is divisible by 4 for all integers n ù 1.
n n

.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
132 Practice exam papers

8 [Maximum mark: 7]
Find, in the form z = rei, the roots of the equation z3 = 4 – 4 3 i.

.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
Practice exam papers 133

9 [Maximum mark: 7]
Find the first two non-zero terms in the Maclaurin series for cos– x2 .
1 x

.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
.....................................................................................
134 Practice exam papers

Do not write solutions on this page


Section B
Answer all questions in an answer booklet. Please start each question on a new page.
10 [Maximum mark: 18]
Let f(x) = xe–kx where x ∈  and k > 0.
a Show that f(  x) = (1 – kx)e–kx and find f(x) in the form (a + bx)e–kx. [5]
b Find the x-coordinate of the stationary point of f(x) and show that it is a maximum. [5]
c Find the coordinates of the point of inflection of f(x). [3]
d The graph of y = f(x) is shown below. A is the maximum point and B is the point of
inflection. Show that the shaded area equals 2e2–23 . [5]
ke
y

11 [Maximum mark: 15]


The following system of equations does not have a unique solution.
6x + ky + 2z = a
6x – y – z = 7
2 x – 3y + z = 1
a Find the value of k. [6]
Each equation represents a plane.
b Find
i the value of a for which the three planes intersect in a line
ii the equation of the line. [7]
c If the value of a is such that the three planes do not intersect in a line, describe their
geometric configuration, j ustifying your answer. [2]
12 [Maximum mark: 22]
Let f(x) = x2 – 2 x – 3, x ∈ .
a Sketch the graph of y = |f(x)|. [3]
1
b Hence or otherwise, solve the inequality |f(x)| > – x + 4. [6]
2 x–7
2
Let g(x) = .
f(x)
c State the largest possible domain of g. [1]
d Find the coordinates of the turning points of g. [5]
e Sketch the graph of y = g(x), labelling all axis intercepts and asymptotes. [5]
f Hence find the range of g for the domain found in part c. [2]

You might also like