Applied Thermodynamics
Module I
Thermodynamics and Thermodynamic System
Q=∆U+W
Heati
DeRiva hoo of Rlation b/w SpeufcMaaki
enclosed io a Cootaine rs
Consid c gas
beng hea tol at Constant pRe4cde,
beng
=tmarsoo the 9as
T, Tshal Teopasa tua
Ta Fioal TempaRafuss
Totra Volu me
V2
Constarnt
Cp Speoisc
Cy Spece heat at Constarst Volame
Noco heat Suppled at onStornt prelSuke
m G4T mCp (Ta - Ti) O
chage b oena eneng
AU =
C, AT- c , (T -
T) .
Heat ctlsed tos exteanal woth
W P - ) me (-T)
By Fikst la o7 Theamodynamcs.
Q AU +
mc2 - T) my T-Ti)+ mRT -T
Concelhag G)Ra both Sels
C yCy+ R
Raho o Specic hea
P ha ts Is Calad
The ahon ooh Specifie
adabathc lndx
Cv
akoays gaea.le thanCy
|Sinu Valuu Cp
I s alcoays gkeatea tha Cmy
Thormoynam OcestoT
omofo
IConstornt Voluma procas/ Bochoac pkoceis
T A
P
S
P-V Oug Aa T-S Ong Aa
(P-V- T elahonship.
By icen gas quatior
P
T
Sinc Coos tont Volume V - V2
P Pe
T2
Wonk cone
Ne kno thal
W=Pdy P(V-V)
S1oa V2 = Vi
W =O
1Deat taonsfe
hle know that
Cy 4T= mcy(T - T)
(N Change Io eanal eneray
AST a
Au+W
AU
Sioco hW =0 =
By Joula's la
AU= D G , 4T
mcy- T)
ConTant pxeSSCULO PROCASLSobec Pantas
ow3
P
T 2
2
Pesune leopakatue- Volume Relatlouh
-vT)
By
By ickaal Gaas equa Troo
P P Ve
T2
Snce
(1) Woskdone W
W-P dv= P(-Y)
mR - T)
0D Cbenge Io Toto nal eneagya B Joals sla
AU C , 4T: MCT2- )
i1) eat tkansfer,
By Fixst la
Au+
= DC, 4T frRAT
o AT +R)
C-CyR
Q m C T
Cp Cy +R.
Consant Jempaiature pROUsS|Tsothokrl proC
S
(b PALISRi - lempaaatue - Volcma lahensp
P-V-T
yrolas Gnas equaihoo
P PVa
T T2
Sina T= T2
PV PV2
A WoAkdone, W
NPdv mRT dv PV MRT
V
P mRTT
W Rdv
2
r (lov)
mRT o(V)- Dolv)
RT n
MRTRn
io coheb S the expoRSis
Aalo
Dchange in teanal energy,4u
AU
AT =0
Heat Ranshes
By Fist lao
AufW
Sinee
Q W MRTo/ Va
TT
VHdh abatc Paous Jeptkopic pRoCeAS.
pROu SS lo cobch the wORking Substone
oeithex Aecerves DoR ives Out heat t is
Su &AoCndings, during is
CoRop AD SIon, Is Ca lad
expanslbn 01
oadabahc PRosS.
Py, T, Ot iotral Condihong and Pa, V,T
Qe inal Stat pxopeales .
p-V-T Rela tronshp . Lropot tant Desivaloo
9Maaks
Finst la Q=404+W.
Sna Q-o ( Isentkoprc PAoCeIS)
Ay +l=O
Cy4T+ PAV =0.
mCy dr+ Pdy -0 [Changingb dasivahier
my dr =-pdv
dr--Pdv
mCy
Also twe koo pv- mRT
Sicdes
Applying dui vative oo bath
pdy +vdp - MR dT
dr-pdv Vdp pdy vdp
R C-C
Ro O
P dv Pdv+ Vdp
Cy m CCp-
Cp-Cy Pdv vde
Cv -pdv
-| =-1 -Vde
C Pdy.
dp
P dv
dy V
d
dy 4de--0
Joteqaating both Sides
n y+ Sn P ko
b +of- n C
PvC
PaVe-PV
voskdone W
MR(T- T)
-I
2U =
Change io Joterne Enegy
meyT T)
WORkdone t aclo bahc pAoces(derivation
8Maaks
2
W-2 P dy
>P- V P -PV
No PV =C
2
y d v - Py d
P
-4172
P -+
.- 1-
PV
-
Sinta PyPV2
V-PV
Fo expan
SIoN