Chapter 1
ALGEBRAIC TOPIC
1.1 REVIEW ON NUMBER SYSTEM
The real number is any number that has a decimal representation. Figure 1 illustrates how the
set of numbers are related each others.
                                           REAL NUMBERS
                                                (R)
                  Rational Numbers                                  Irrational Numbers
                         (Q)                                                 (I)
                        Integers                 Non-Integers
                           (Z)
  Negative Integers        Zero      Positive Integers
          −                                   +
        (Z )                               (Z )
                                     Natural Numbers                       Even Numbers
                                           (N)                              Odd Numbers
                                                                           Prime Numbers
                             Whole Numbers
                                  (W)
                      Figure 1 : Real numbers and important subsets.
1. REAL NUMBERS (R)
   a) All numbers.
   b) Rational numbers and Irrational numbers are Real numbers.
2. RATIONAL NUMBERS (Q)
                                                            a
   a) Numbers that can be represented as a fraction           ,where a and b are integers and b ≠ 0
                                                            b
      .
   b) Example of rational numbers,
                                                2 15     3 22        5 
                        Rational Numbers, Q=  ,      ,3=  , , 25= 5=  ,... .
                                                7 16     1 7         1 
   c) Decimal that terminate/end.
                              Rational Numbers, Q = {4.74,3.29,7.895623,...} .
   d) Decimal that has repetition of digits.
                                               {
                        Rational Numbers, Q = 3.56565656...,0.0987987987,... .       }
3. IRRATIONAL NUMBERS (I)
   a) Numbers that can be represented as non-repeating and non-terminating decimal
      numbers.
   b) Example of irrational numbers,
                                              =I
                              Irrational Numbers,   {                           }
                                                        6, π,e,1.25648379...,... .
EXAMPLE 1
                                   2
Given the set of numbers π , 4, 11,  . Classify according to
                                   3
             Types                                               Solutions
  a) Real numbers (R)
  b) Rational numbers (Q)
  c) Irrational numbers (I)
EXAMPLE 2
                          22        
Given the set of numbers  , 5, 9,2π  , list out the following from the set given.
                         7          
              Types                                               Solutions
  a) Real numbers (R)
  b) Rational numbers (Q)
  c) Irrational numbers (I)
EXAMPLE 3
                             9                       
Find the numbers in the set − , 16,0, −1.6, π + 5, 7  that belong to the specified set.
                             7                       
              Types                                               Solutions
  a) Real numbers (R)
  b) Rational numbers (Q)
  c) Irrational numbers (I)
4. INTEGERS (Z)
   a) Integers are numbers that are classified into negative integers(Z − ), zero and positive
      integers(Z + ).
   b) Example of negative integers,
                              Negative Integers,Z − ==    {..., −5, −4, −3, −2, −1} .
   c) Zero,
                                                Zero = {0} .
   d) Example of positive integers,
                                                                       36 
                                Positive Integers,Z + = 1,2,3, 4,5,       ,... .
                                                                        6     
5. NON INTEGERS
   a) Non-integer means numbers that are not "integers".
                                                          2 5 22 
                                      Non Integers =  , ,       ,... .
                                                         3 7 7      
6. NATURAL NUMBERS (N)
   a) Counting numbers.
   b) All positive integers.
   c) Example of natural numbers,
                                                              25         
                              Natural numbers,N = 1,2,3, 4,      ,6,7,... .
                                                              5          
7. WHOLE NUMBERS(W)
   a) Numbers that start with zero.
                                                              16       
                               Whole numbers,W = 0,1,2,3,        ,5,... .
                                                               4       
8. EVEN NUMBERS
   a) Non-zero whole numbers which are divisible by 2 without any remainder.
   b) Example of even numbers,
                                                  12                   16 
                           Even numbers= ..., −      , − 4, − 2,2, 4,6, ,... .
                                                   2                    2   
9. ODD NUMBERS
   a) Non-zero whole numbers which are not divisible by 2.
   b) Example of odd numbers,
                                                 14                     18 
                           Odd numbers= ..., −      , −5, −3,1, 3, 5, 7, ,...
                                                  2                      2   
10. PRIME NUMBERS
    a) Whole numbers that are only divisible by itself and 1 without any remainder.
    b) Example of prime numbers,
                          Prime numbers = {2,3,5,7,11,13,17,19,23,29,...}
EXAMPLE 4
                                     5 π       
Find the numbers in the set −50,0, 3, , ,1.333  that belong to the specified set.
                                     6 2       
                Types                                         Solutions
  a) Whole numbers (W)
  b) Natural numbers (N)
  c) Integers (Z)
  d) Irrational numbers (I)
  e) Rational numbers (Q)
  f)   Real numbers (R)
EXAMPLE 5
                                             3
Find the numbers in the set −5,0, 4, π, −1.8,  that belong to the specified set.
                                             2
                Types                                         Solutions
  a) Whole numbers (W)
  b) Natural numbers (N)
  c) Integers (Z)
EXAMPLE 6
                                 15             
Find the numbers in the set 17, − , 81, π + 7,0  that belong to the specified set.
                                  5             
                Types                                         Solutions
  a) Whole numbers (W)
  b) Natural numbers (N)
  c) Integers (Z)
  d) Irrational numbers (I)
  e) Rational numbers (Q)
  f) Real numbers (R)
                                       TUTORIAL 1
QUESTION 1
a)   Determine whether the following statements are TRUE or FALSE.
     i)    All integers are whole numbers.
     ii)   All rational numbers are real numbers.
                    2
                22 
      iii)      7  is an irrational number.
                
      iv)      −3 is an integer.
                                  2              
b)    Find the numbers in the set  ,0, π,1.32,3e  that belong to the specified set.
                                   5             
        i)   Whole numbers.          ii)   Irrational numbers.    iii)   Rational numbers.
QUESTION 2
a)   Determine whether the following statements are TRUE or FALSE.
     i)    All real numbers are rational numbers.
     ii)   All odd numbers are whole numbers.
     iii)   π + 3 is an irrational number.
     iv)    −9 is a natural number.
                                       15           
b)    Find the numbers in the set 19, − , 81, π2 ,0  that belong to the specified set.
                                        5           
        i)   Whole numbers.          ii)   Irrational numbers.    iii)   Natural numbers.
QUESTION 3
a)   Determine whether the following statements are TRUE or FALSE.
     i)    All whole numbers are natural numbers.
     ii)   All irrational numbers are rational numbers.
     iii)   2π and 3e5 are not a real numbers.
             49
     iv)          is an integer.
             7
                                   66        π 
b)    Find the numbers in the set −   ,5.321, ,0  that belong to the specified set.
                                   11        2 
        i)   Whole numbers.          ii)   Rational numbers.      iii)   Integers.
QUESTION 4
a)   Determine whether the following statements are TRUE or FALSE.
            1
     i)       is a real number.
            5
     ii)   All integers are whole numbers.
     iii)     36 is a rational number.
     iv)   All rational numbers are odd numbers
                                   22        e4 
b)    Find the numbers in the set  ,5,2 5,2π,  that belong to the specified set.
                                  7          5
        i)   Whole numbers.          ii)   Rational numbers.      iii)   Irrational numbers.
QUESTION 5
a)   Determine whether the following statements are TRUE or FALSE.
            7
     i)        is a rational number.
            2
     ii)    −10 is a non negative integer.
     iii)  Negative four when divided by zero is zero.
     iv)   All prime numbers are integers.
b)                               {
      Find the numbers in the set −7,0,0.457,8e 4    } that belong to the specified set.
       i)   Whole numbers.           ii)   Rational numbers.        iii)   Integers.
QUESTION 6
a)   Determine whether the following statements are TRUE or FALSE.
     i)    0 is an integer number.
     ii)   An odd number when divided by zero will result in zero.
     iii)  −99 is a real number.
      iv)     2 2 is a rational number.
                                           16 π2 
b)    Find the numbers in the set 17, 49, − , ,0  that belong to the specified set.
                                            8 4 
       i)   Whole numbers.           ii)   Irrational numbers.      iii)   Natural numbers.
1.2 REVIEW ON ALGEBRA
1.2.1 OPERATION ON ALGEBRAIC EXPRESSION BASED ON BODMAS
RULE
A)    Algebra
The study of algebra is vital for many areas in Mathematics. In algebra, we use letters (x, y, z,
a, b, R, S, T,...) to represent numbers.
Basic Concepts of Algebra
Algebraic Terms
1.    An algebraic term is a term which contains a number and unknown
                                                4 is a number
                                   4rs
                                                r and s are unknowns
2.     An algebraic term with one unknown is an algebraic term with only a number and an
       unknown.
                                               5
                                         9m,     q , 0.7t
                                               6
Coefficient
1.     A coefficient in an algebraic term is usually a term that is written in front of an
       unknown. A coefficient can be positive or negative.
                                     4r coefficient of r is 4
                                    -7s coefficient of s is -7
Like Terms
1.     Like terms are terms with same unknown.
                                   2
               3b, 0.9b, -2b and     b are like terms because they have the same unknown, b.
                                   3
Unlike Terms
1.     Unlike terms are terms with different unknown.
                   2
             3k and b are unlike terms because they have different unknowns, k and b.
                   3
Algebraic Expressions
1.    An algebraic expression contains one or more algebraic terms which are combined by
      the plus or minus signs.
                                       −9w, 7x + 4y, 3 − 5r + 9c
2.          Since an algebraic expression is the combination of one or more algebraic terms, the
            number of terms in algebraic expression can be determined.
EXAMPLE 1
Determine the number of terms in the following expressions.
                             Algebraic expression            Number of terms
                   a)               p+9k − y                          3
                                  y
                   b)               − 7m − 0.2t                       3
                                  8
                   c)               4x 2 + 3y
                   d)                 5x
                   e)             2a − 3r + 34
                               1
                   f)            − 4x + 5t − 6r + d
                               3
                                      3
                   g)          4x − 3 + 6y − 2d
                                      5
B)    Operations on Algebraic Expression
Addition and Subtraction
1.          To simplify an algebraic expression, group the like terms first. Then, add or subtract
            the like terms.
2.          Unlike terms cannot be combined into a single term by adding or subtracting.
3.          When adding or subtracting like terms, only their coefficients are to be added or
            subtracted.
EXAMPLE 2
Simplify each of the following.
     a) 2x + 3x                      b) 5m − 6m                      c) 9 − 2t − 6t
     Answer                          Answer                          Answer
     = 5x                            = −m                            = 9 − 8t
     d) 2p − 7 − 8p + 1              e) −15t + 6t + 7                f) 0.6y + 3.4y
     Answer                          Answer                          Answer
     = 2p − 8p − 7 + 1
     =−6p − 6
                                                            9t + 7                           4y
     1   3                                5   1 1                                            1
  g)   m+ m                            h) − w+ + w                           i) 4k + 3h −      k
     2   4                                6   2 3                                            2
  Answer                               Answer                                Answer
   5
  = m
    4
                                                                   w 1                                  7k
                                                               −    +                                      + 3h
                                                                   2 2                                   2
EXAMPLE 3
Simplify each of the following.
    (         ) (
 a) 5p2 − 3 + 2p2 − 3p3      )         b) −5k − h − ( −3k )                  c) −4.2u + 3 + 0.4u + c
                                                                             Answer
 Answer                                Answer
= 5p2 + 2p2 − 3 − 3p3
 −3p3 + 7p2 − 3
 =
                                                                   −2k − h                         −3.8u + c + 3
          1     1                      3    1       5                      f) ( a + b ) − ( a − b )
 d) 3 −     x −  x + 5               e)  a − x + 3 − a + 3x
          2     6                      2    2       6                      Answer
 Answer                                Answer
                                 2                     15   4
                         −8 −      x                      x+ a+3
                                 3                      6   6                                           a2 − b2
 g) ( 3m − 4 + 4k ) − ( −3 − 3k )           (       ) (
                                       h) a3 − 2a2 − 3a2 − 4a3        )                       (
                                                                             i) 4k − 3h2 − 4k − 3h2      )
 Answer                                Answer                                Answer
                                                              5a3 − 5a2                                        0
                      3m + 7k − 1
Multiplication
1.          The product of two algebraic terms can be found by multiplying numbers with numbers
            and unknowns with unknowns.
EXAMPLE 4
Simplify each of the following.
     a) 3 × 2b                       b) 3ab × ( −4bc )                    2
                                                                        c)  pq × 6p2 q
     Answer                          Answer                               3
     = 3×2×b                                                            Answer
     = 6b
                                                             12ab2c                      4p3 q2
     d) 3x 2 ( −2x )                 e) 2ab2 ( 3abx )                          2   
                                                                        f) 5d3  m3 
     Answer                          Answer                                     5  
                                                                        Answer
     = 3 × −2 × x 2 × x
     =−6 × x 3
     = −6x 3                                                 6a2b3 x                     2d3m3
     g) 3 × −7b                      h) 3ab × 9ab                         1
                                                                        i)  p × 30p2 q
     Answer                          Answer                              15
                                                                        Answer
     = −21d
                                                             27a2b2                       2p3 q
             ( )
     j) −7c 3c 2                             (
                                     k) −3a3 −2ab3      )                    ( )
                                                                        l) 4x ax 2
     Answer                          Answer                             Answer
     = −21c 3
                                                             64a4b3                       4x 3a
         ( )
     m) a ( ax )
         2
                                        (
                                     n) 2ax 2   ) ( −2ax )              o) −3s ( −5t )
     Answer                          Answer                             Answer
                              a3 x                            4a2 x 3                     15st
Division
1.         The quotient of two algebraic terms can be found by writting the division in fraction form
           and solving it by cancellation.
EXAMPLE 5
Simplify each of the following.
 a) 15pqr ÷ ( −5p )                                   24a3bc 2
                                                    b)
 Answer                                                8bc 2
      15p qr                                        Answer
 =
      ( −5p )
 = −3qr
                                                                                               3a3
 c)
      2ab × ( −6rs )                                     (10cd) ( 20mn2 )
                                                    d)
      3b                                                           5cn
 Answer                                             Answer
   − 12 a brs
 =
      3b
 = −4ars
                                                                                           40dmn
   7s2 t 2                                                 7xy 2
 e)                                                 f) −
   14st 4                                                   9y
 Answer                                             Answer
      7s   2
               t   2
                                                        7xy
 =                                                  = −
  14 s t 4                                               9
   1
 = 2
  2t
   39ab                                               32x 3 z3
 g)                                                 h)
   52ab                                               64x 3 z
 Answer                                             Answer
   39 ab
 =
   52 ab
   3
 =
   4
                                                                                                z2
                                                                                                2
Expansion
1.       The expansion of an algebraic expression is the product of the algebraic expression
         with another algebraic expression.
2.       Some algebraic expression involving multiplication are written using brackets.
3.       The distributive law is used to remove the brackets. Each term inside the bracket is
         multiplied by the term in front of the bracket.
Expanding Single Bracket
                                         Distributive Law
                                        a ( b + c ) = ab + ac
If the number in front of the bracket is negative, the sign of each of the terms inside the brackets
will change when expended.
EXAMPLE 6
Expand the following.
 a) 4 ( x + 3y )                                   b) −2x ( 4x − 3 )
 Answer                                            Answer
= 4x + 12y                                         −8x 2 + 6x
                                                   =
  c) −3 ( 5x + 2 )                                 d) − ( 2x − 3 )
  Answer                                           Answer
  −15x − 6
  =                                                =−2x + 3
 e) 2 − 3 ( x − 4 )                                f) 7 + 2 ( x − 3 )
 Answer                                            Answer
 =2 − 3x + 12
= 14 − 3x
                                                                                            1 + 2x
 g) 6 − ( x − 7 )                                  h) 2 + 5 ( x − 3 )
 Answer                                            Answer
 = 6−x+7
= 13 − x
                                                                                       −13 + 15x
  i) 5 − ( 3 + 2x )                                j) d ( d − 4 ) − 5
  Answer                                           Answer
  = 5 − 3 − 2x
 = 2 − 2x
                                                                                      d2 − 4d − 5
 k) 3 ( x + 2y ) − ( 3x + y )                               l) −5 ( 3x + 2 ) − 4 ( 2x − 1)
 Answer                                                     Answer
 = 3x + 6y − 3x − y
 = 5y
                                                                                                    −23x − 6
 m) 3 ( x − 4 ) + 2 ( 5 + x )                               n) x ( x + 5 ) − 3 ( x − 3 )
 Answer                                                     Answer
 = 3x − 12 + 10 + 2x
= 5x − 2
                                                                                                  x 2 + 2x + 9
 o) 5x ( x + y ) − 2y ( x − y )                             p) 3x ( x − 2 ) − 2x ( 9 − x )
                                                            Answer
 Answer
 = 5x 2 + 5xy − 2xy + 2y 2
 = 5x 2 + 3xy + 2y 2
                                                                                                   5x 2 − 24x
Expanding Two Brackets
1.         In expanding two brackets, term within the first brackets is multiplied by every term
           within the second brakets.
                                                  Distributive Law
                                  ( a + b )( c + d) =   a ( c + d) + b ( c + d)
                                                    =   ac + ad + bc + bd
EXAMPLE 7
Expand the following.
     a) ( x + 3 )( x + 5 )                                  b) ( 5x − 2 )( 3x + 7 )
     Answer                                                 Answer
     = x ( x + 5) + 3 ( x + 5)
     = x 2 + 5x + 3x + 15
     = x 2 + 8x + 15
                                                                                             15x 2 + 29x − 14
     c) ( x − 5 )( x − 2 )                                      d) ( x − 1)( x − 2 )
     Answer                                                     Answer
                                             x 2 − 7x + 10                                     x 2 − 3x + 2
     e) ( 2x − 7 )( 3x − 2 )                                    f) ( a + b )( a − b )
     Answer                                                     Answer
                                          6x 2 − 25x + 14                                          a2 − b2
     g) ( a + b )( a + b )                                      h) ( −a + b )( a − b )
     Answer                                                     Answer
                                            a2 + 2ab + b2                                   −a2 + 2ab − b2
Perfect Square Expansion
           (a + b)       and ( a − b ) are called perfect squares.
                     2              2
1.
           Let say,
                                        (a + b)            ( a + b )( a + b )
                                                  2
                                                           =
                                                           = a (a + b) + b (a + b)
                                                           = a2 + ab + ba + b2
                                                           =a2 + 2ab + b2
2.         Similar to
                                                             ( a + ( −b ) )
                                                                              2
                                        (a − b)
                                                  2
                                                       =
                                                       = a2 + 2a ( −b ) + ( −b )
                                                                                        2
                                                        =a2 − 2ab + b2
3.         As a conclusion, we can remember the rule as follows.
           Step 1              : Square the first term.
           Step 2              : Add twice the product of the first and last terms.
           Step 3              : Add on the square of the last term.
EXAMPLE 8
Use the rule ( a + b ) =a2 + 2ab + b2 to expand and simplify the each of following.
                              2
  a) ( x + 9 )
                  2
                                                                 b) ( x − 7 )
                                                                                2
  Answer                                                         Answer
  ( x ) + 2 ( x )( 9 ) + ( 9 )
         2                                2
  =
  =x 2 + 18x + 81
                                                                                                       x 2 + 14x + 49
  c) ( 5x + 2 )                                                  d) ( 3 − 2x )
                      2                                                             2
  Answer                                                         Answer
  ( 5x ) + 2 ( 5x )( 2 ) + ( 2 )
             2                                2
  =
  = 25x 2 + 20x + 4
                                                                                                        9 − 12x + 4x 2
  e) ( 4x + 2y )                                                 f) ( 9x − 4y )
                          2                                                         2
  Answer                                                         Answer
  ( 4x ) + 2(4x)(2y) + (2y)
             2                                    2
  =
  = 16x 2 + 16xy + 4y 2
                                                                                                  81x 2 − 72xy + 16y 2
  g) ( x + 3 ) − 5                                               h) 2 − ( 3x + 4 )
                  2                                                                     2
  Answer                                                         Answer
  ( x + 3)
             2
                 −5
  =x 2 + 2 ( x )( 3 ) + ( 3 ) − 5
                                      2
  = x 2 + 6x + 9 − 5
  = x 2 + 6x + 4                                                                                     −9x 2 − 24x − 14
  i) ( x + 3 ) + ( x − 3 )                                       j) ( 5x − 2 ) − ( −3x − 1)
                 2                2                                             2             2
  Answer                                                         Answer
  ( x + 3)       + ( x − 3)
             2                2
  = x 2 + 2 ( x )( 3 ) + 32 + x 2 + 2 ( x )( −3 ) + ( −3 )
                                                             2
  = x 2 + 6x + 9 + x 2 − 6x + 9
= 2x 2 + 18
                                                                                                      16x 2 − 26x + 3
 Difference of Two Squares
 1.    a2 and b2 are perfect squares and so a2 − b2 is called the difference of two
 squares.
                              Notice that
                                  ( a + b )( a − b )   = a (a − b) + b (a − b)
                                                       = a2 − ab + ba − b2
                                                   = a2 − b2
 EXAMPLE 9
 Expand and simplify using the rule ( a + b )( a − b ) = a2 − b2 .
  a) ( x + 2 )( x − 2 )                                   b) ( 4 − y )( 4 + y )
  Answer                                                  Answer
      2
= x −4                                                  = 16 − y 2
  c) ( 3x − 2 )( 3x + 2 )                                 d) ( 7 − 4y )( 7 + 4y )
  Answer                                                  Answer
    ( 3x )       − ( 2)
             2            2
=
= 9x 2 − 4
                                                                                          49 − 16y 2
  e) ( −3 − 4x )( −3 + 4x )                               f) ( −5y − 2 )( −5y + 2 )
  Answer                                                  Answer
                                            9 − 16x 2                                      25y 2 − 4
  g) ( 3x − 6y )( 3x + 6y )                               h) ( −4x + 7y )( −4x − 7y )
  Answer                                                  Answer
                                        9x 2 − 36y 2                                    16x 2 − 49y 2
Further Expansion
1.      In this section, we expand more complicated expression by repeated use of the expansion
        laws.
EXAMPLE 10
Expand and simplify.
             (
 a) ( x + 2 ) x 2 + 3x − 2      )                      b) ( 4 − y )
                                                                      3
 Answer                                                Answer
 =x 3 + 3x 2 − 2x + 2x 2 + 6x − 4                      =( 4 − y )( 4 − y )( 4 − y )
 =x 3 + 3x 2 + 2x 2 − 2x + 6x − 4                      =   ( 4 − y ) (16 − 8y + y 2 )
 = x 3 + 5x 2 − 4x − 4
                                                       = 64 − 48y + 12y 2 − y 3
 c) x ( 3x − 2 )( 3x + 2 )                             d) ( 3 + 2y )(1 − 5y )( 7 + 4y )
 Answer                                                Answer
                                           9x 3 − 4x                                21 − 79y − 122y 2 − 40y 3
 e) ( 2x + 3 )( −3 + 4x )
                            2
                                                       f) −3 ( 4s − t ) ( 5s − 4t )
                                                                          2
 Answer                                                Answer
                                    32x 3 − 54x + 27                          240s3 + 312s2 t − 111st 2 + 12t 3
 g) 3x + 2x 6 − 2x − ( 3x − 1) 
      2
                                                       h) 5  x 2 − 6x ( 5 − 3x ) + 4x 2  
                                                                                             
 Answer                                                Answer
 = 3x 2 + 2x ( 6 − 2x − 3x + 1)
 = 3x 2 + 12x − 4x 2 − 6x 2 + 2x
 −7x 2 + 14x
 =
                                                                                                  75x 2 − 150x
i) 7xy − 5z  4 ( 5z − 3 ) − 6 − ( 4xy − 8 )         j) 2b  4 ( a − 2 ) − ( 4b − 3 ) + 5a  − 6ab
Answer                                                  Answer
                        7xy − 100z2 + 50z + 20xyz                                           −8b2 + 12ba − 10b
k) −4 ( 3x − 2y ) − 3x ( 5y − 9x ) − 17xy
                   2
                                                                             (                )
                                                        l) ( 5x − 7 ) − 5y 3x 2 − 3x + 2 + 15x 2 y − 24x 2
                                                                     2
Answer                                                  Answer
                                 −9x 2 + 16xy − 16y 2                            x 2 − 70x + 15xy − 10y + 49
1.3 RADICALS/SURD