0% found this document useful (0 votes)
100 views43 pages

Toc Unit 1

Uploaded by

Kavya Nandhini
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
100 views43 pages

Toc Unit 1

Uploaded by

Kavya Nandhini
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 43
- untt-4 Automation “Intoductton eRe whet ts compertertfon 2 computation Ws a sequence silops, thal car be pe omed by a computer. uA : ; : The. Th 1, tompuctertton has yarige applicctibns th Comprler lesigqn,!' Hes 3 aorttgt etd rrlelt ee no oor ‘ senoroled fo. En ineorg - Bask concept of Automored theo J a ee © alphatet: : denctis cities & oo intl “set of ayrobols : Wz J Long ltl) B= FOrbrG ¥ sli) s $619 BBS tag: vo " ia hing (or) toord over On calphabe = moO finite osidered © Liat of “Ambcls chosen, fro “the Zz. 7 3 Eq: ooollos ol,|,0 are ssejrobols of “the alphabet : se {013. : u , engih % ~Jhe ching cap be degined. aw cymbe ft the chin Wr be a -Ahut then the length ¥ the | the ho of tel , | Sieg 9 N &- denoted bye I. £4 jet “we cole wis & ; @ Eroply | Now Sting : Tg @ sting have no symbol (or) “the tength of” the chit) ® 0, Hen” & ts called Em airing | NULL © gting - “rpalon nis denoted be Gry at _————— tf , 2 , a Vi )conrertonedtfon | 9% Strings: Jet wand v be any ~lwo aes alphabet =. Thee She — Concactenats i apa BA ie certenatisn — v & rs Fg: Dbets us Hello, Aes vz) hort : tol then Uv = Hellowortd,. + colhbamng 9 Orie wet tH brea af 1 A det hawhe . . pinits number 0 lement. & BD iics tage ee PEERS by hla 7 ® iginile_set if a. set heviny nek ‘puancbor "etient| | 4% called | ano “og, % | Vo seogieg’ == fas bry! Languages : ae 6-8 at sto 36, 804,8 , Leng Ae ret ‘=! be an oles and =* be be “Ket % alt stings over =- of tring and Lfz*> ie alle Over = Subsel Jeorlarn in eg: = fa)b3 theo $ Sea) b, ab ba, aa, bb, abay +23 by! sg'sanhs sebbde-4 the 1 =) fayab, ba bb3 “4 | Efntte ... AttomedaFA) Whal fs Fintte audometo. ? A Finite Acetomerta (FAD OY Einee stale Atctometia (FSA) consist ef finite, estes ond a Set Oo transiestions -Tyor one atte = tO Cthothes Stee. A File artormata can be ohvided thto 3, “Fypes. Thy are, Fite cstecte “Automata C DFA) I Del¥rm mise 9. Non. Detesminish finite tals Acctometa.: (NFA) oS A: peterministte Finite state Automata (DFA) : i For > , ¥ Fyom. each input symbol) ig “there & | exact stot AAC om ches “trons 146 fon m each Store | -then fintte axectometen, ts ested “0 he DEA. Eq: eI J > (Py Se Josby | 3 Grates 020? =X, sre = % kMD% ‘ Ae i ee rai boa fo. | Rommel gehen Tom RH Ys Ae ED FES eee -tuple (OQ 2d. 403 e) mhete, 3 c |g sharinite set of stoted Fis a Rinte set Y Tip Syeobo! p> & he Ririal’ tote ” oO poe che Set of: Bipal frotes Pemetion | she — Tarsitron funchdr h Dra clog tec (as OS LW D=P wv, pear aee WS Cv, Wd (dtd 9s 0d Transttton Dibq rar [21] The Transition oli agram osocietted with Ora B&B a anected ara twhoge vertfcers ane the Boles of The edgas & the — gragh ate the Peaingifon A ror one Bree — fo another = tale EQ’ ‘let DRA me (= $4054 9455 > Ez Losby, | % odoF=Sqeyy' © whee, f° Coo >be cleprtect Os 5 664059 =9,, fStop, 12229 db C42 9 b= Vi Thestepore the — -hromnéition chagyram Dra “ts : fpr “the given i 3O-Q=D : ae , WG Transition able: @ The table. twhich Yvepresents ahe list at Trane tion yoo YS or function % % pie ectomata & called *trensPtibn stable oes 9: : pet Dea m= (8= $40,%,545 9,5 =$95b39, Fords F =a) 4 wheie d can be ep) ned a ‘ | BS (40.9 24, > DLUW 2024s 1 SCM b2= 4, 1 | w The transrfion table oy -the. given DFA k | | states a b | | “| | Vo 4% - Y, Go r Vo - 4, | Language accepted bu DEA: es The Sting x f&. Saf) fo be cccepted ee ginite Ghevfe Arefomect if dCYosr O=P fer Some p @ Fi The Collection 6 » acceptect stings B called — tanqua a. a o" ae accepted ‘avd Sore 7 ated | by Lem). saoewee Socata rage > | Fe, [ems eter Fard chow ents | Problems Related Yo fanquaqe a fe eee ¢ ae tip | @ chek whethey a shi taaner of laccepted (or) NO. by the “eteotog automata? . aabe -w een Aba’ Not ) Solr: : Gitven w = aabe ij Pde aabe) = 03 “2g CURED = d (5 (4120) >bed | zg 6% oO = dC dt% 2 OO = db O%1 20) 2 4, EF ~aabe & aceptel | — |@ rs ~the Shing (i) boa Gi) co ave aceried | (or) net by the above crerto matte ¢ (D GRven w= bAe ee Jd (%0> boas (d 6% 9 #6), 00) = 66400) =
1" 50000, --* 7 conclue & (im % ihe Aad Of al hings Wwelh an -eveh number of ols and tyen? not Wg. r —_— 2Non defermnistic FPnite sttede Auclomata (FAD: Formal Daten NM che nea Ys .cpeapd by P “etuuplécs (8, = 50> Vo» F) rt d yonere a nite ar, fo the Y sek roles o_ & dhe Linke et % fnpudt sumbds G- & the & Znitial gfacte J eb ae finite act sind ctetes. J-9s the “Lranstien function For each fps mol, Jp cthee a4 One Gre mere | transition For eu’! pan , ther dhe > ‘firite BY auslomada B cated NFA.” | yy) 3° fo- | fe a 4 The transition funefion Od (4, Loa) = Vd Psa) 1D J (SP she oPss---Rd,00 =O dl Pp») FRR d can be clef the} os Lanauage .. Accepted by NTA! A Lengua ik) aeepted by NS i | estate to “both F Ond Tim = 1widG,,wmexog] = ¥ | Problemnds related fo Languare crecepsted by NPA: t- Chee whether the ven Ahir ore accepted or Not bi “Hie ona ausometa. ’ Dw, 2aa Ow, -aba~ GW Ww, ab ae oO nr B& f is . artes } W yet w,= aa rh 8] Coq AD = J (dC40 242 | = dC $40249% 40 ats : 28( Vor BvdlGem Ud C%a7% = $4044 94 5 ULF, %2 4 OP = $96,4, U4 n= 545% $0 ond | he, Qa & accepted , | OD bet us, = aba | S402 abar=d (dC Yor4 > ba) ) oe ee Jd Cf Got, 5 %24> ba) \ = Jd (%, bad v d(% > bad Ud C4) bad —@ la. Now 5 | § C%0> bad = d (d C4056) 5a) = d(4050 = VU054,2%0% oT | Si ndlarty i SCasbay= b CdCarob) 90)” : = 30% sad= 7 ye 3 Now, : bY 22 bD= FC SCV2 br.” = dCb,ad=> 8 C40, aba) = $ Gar, 142 Gv fH r%2 98 = {4% 1,9DE = IDI +9 aba %& accepted, iW) Let Ws =ab bd (%02abd= J (5 C%2a)>) : = db (4 40947%4 >b) = dC Gob UV dl) UV d(Va,b) $440 FU O o $40 4,4 ne F 9903 ~ abe & not accepted tb 4 THM) a. Fen ~lhe banque e exccepted a ~the folte wth acto tm ator d oO - er" ” ye L Veale Pe Tm)= foo, lly. +--+ 3 4 hor 2m, the an Nr & States oO on i ~4e_| 8402983 Tah 4 4, 6 Fy 4 @ | %9%4 $%% Ve | 2443 é $407 $43 | te} w_= 100 ~ 804 > 120) =d (dC qos 1) 500) 2d (8045 rp) | saee = 5 (or00) 05 7° = S3C4200) VA CdC-Y, 9992 ©) | | 5CIe%a Jou SC +P | + dt4q30) ud (432 | © $0045 5 UE HS = §Vo>%s ony 3OF =$4y 444 | 4 100 BD accepted a, (oer Let w= lol j SreRlaaley dd 6 Vo 3"? J (Vo07!0 = =d (402103) ) =d$l§Vo2N 4 201 S6Yo> WU SA 2a) | = dCdC4o20)3 1) vd C4is0)) oo = P4004 312UdCHD Ls = 3 C4210 Ud 6%3 51D - = RVW4 VG oe = 34054, 3NF eo i tol & not Accepted | SHavbing Fin the oad accepted by the i | . Bs ending aba. | | ctuctoma , : | Slodes a » e Ee a | | Vo | F402% % £02428 ee pM [As 448 A013 ins i | Ge fan % $422 VHS t424 / wal 4934 2953 i en be le he aise NEA & ret i 3 (ovo? 28) = 3(5C 0 9) 2% = SCS 40241 32D S3C e000) ¥ 30H 7 ~d(%0>%) yd CVs 3%) = F40> % Vie J OF 2 (444 Fe = aa fs accepted 2 fe.» faa € a WD pep we oP 5 56d ab) 8036402 4 5 C40 7A YE G4 99)9 36D > = § C4058) U6 6 Vorb) a CVor%o) v CW Gy oes ie ab net accepted = W) fet we aba JDL Fo » x60) = d(SC05%) 5 ba) = JC 4 %or 3, bad =dC Vooba) V dCY,> ba) =d Cd (Vo »b) 5%) Vd CIC%,6)50) = 5(@0,%') 9 d(C ),0) =d (wa) Ud (4%. ,4) ud CU, a) = {%o%) v (4) v (hy, 2%) =A%0 0% »V2, Wene oO aba ft = actep fie, aba € Tim) ‘y) rece Let We ACO SCV0 ,accad = did C029), cca) = dkVo% 3 y cea) = dC Vo» Cea) v d(4, aca) = d(dCGor¢)9c@) V dldL% ,¢), 00) = § UV) 34, 08) U d GUY, ta) - SC ola) Vd l4zg5ce) USC, 10) = (hl%0, 0,0) 0 dQ% £),a) VICI 19,0) a (vo »%3 4,0) ud UM 1%y,4,9) Vd ( Ha) = dL Fo 99) Ud l% ,YUd(V3,0) Udy) Ud4,29) ZN AGU $453 U 1350 LF4 UMHS Wlet We aaa g(or9a) = d(SC%0>9), 99) = S(L4o2WY aad = (Jorae) vCY, 29D = J (Sl¥o204) Vdd 2% +) . ee Ud AW IH 4.0) . apd a) v Gl, 2%) VdCU | $4504 Fr WH vt 03 i 2 GoW 1% BF A445 +e | ao =&% cxctepted . =< € Tun) Nien We abe $ (Go, AbO = 6 Cd Co 50) 9be) f = dC 440. U 32 bd = d(Yos bd VIL bY = fd (Yb) 0 © §(d CW DO) = I EVV ye) VU one $4,3%>5c) = d(Voodv d(G229 vd lM) = $4024 40 1424 01S Ios 7 ba, TRF = o abc = nol accep Re, abc # TH O Design a firtte Autforeyto. fev the coving toni Sofn: pee let DRM 4=$8,5,d, %or™) ” where | ao B= TF. WI, Ve 3 = = fo913 4 Jo & an Trrtal Atele. aad J Can be deghel as, Artotes Oo ' 7: Vo - VY, VY vy, | - We Ve _ The finite Automata = Le — )—— © 3) o “@) @ reid comata > cohPch Occep ts OS te ee st ard ode only Hose Stemg UF+th o. Soln: Gitven L= £ 1o,fOO,\05 loloo,. . - % i DEN Ee a =, Jb. UW) ©) wheie Q= {404,542 3 zf0,1k qo an Patital ~<+ate ee {Vad g tan be degre 8, totes \ ® Dasho 9 Berit audometa! te accept “the Ghihg "thet altoays en 00 @ven L= {908,100 » Soe oo loloes oo ave crete Atforectta ts B Desk La iri te cuctomata For -the Vang wae” Le easy? | 815 : © Solon Gir ab, abab » ababab “ The — Fidite nutoreate Es, = Or Gs) = We cetmne{ dean tntte artorctia bey n the a Lega” an 13 a ® Desiqn a cfitite arora tohich accept eld no. 4 & Ne and eal no O's. \ So jd @tiven L= £1/05 bl, 100, Jolly M,....4 i; The FA & | ° , : ! YD ‘ > oO Cy — ] ® detan a cauto mecto Lek As q. % ole fer even po. of 1K ond Solp: GRven Le qoogit, oo, colt, Iolo + +4 << 3G 0 ( ie! ace anal NEA: | eytelne_§ me SE | Theorem: rope \é cStafeme nt For every povelent DFA Siatement- | let L be & leimguceg® ace pred Paes NEA , We can construct an : cs y NEA . Then there ertats & DFA shel “the Game tangueaqe “be digas sta cepts Proag: di. 8xZg_. 28 Let Me (Q,2,4d7407F) be a NFA actepts ila! | ’ 7 BS oR ONE Define M = (8',2's 3!) do's FD BADER, poe 34 ™M hos A Stotes then Mi hae 2 ctherepore 8's $Y), L409 513... C0, G5, L 405 SS peat L Werte sid Oo \ qo > V0) ates comtatns “the ‘ gel Oh cle F & the , lates which st pra} Btote wh NFA. g° + paptne 6) 06 poset . SLs fe a ag) EP re i and only) if $4 U9 Yao 93 924)" SP io Pad BY now we Shoo thet \RB> = Lem we prove by fecloction on the vength tthe toput suing w thet - C49! 402 EPy Pao FA 4 and only i Jo, w) {Pio Pe, 9% Bask step * agp wo 16 4 length oy {w Ban empty Ghing) S CLI, &) = £04 & J (qo.g) - F903 Tod vehon jxteps: that the vesulis & tue For Suppase the ipod Bbtngs of ler th ntor) leas, Now, we poithe ahak the, results tor 5 stings length tet waa be ao Siikg — whth x havin length n and Az, Then by focluction assumnplin | dC 4o'5 1a) > d'Ud'C 40290) t : eg as a oe dg CLR a Poa Ta) . 3 ye ; | Sd lip, ops ge - Thus 1 dF (A'9 20D: Ex trashy oe Me] ed (40) xad Se oe Hen a the yesult & Wwe for o1ny length | Of Atrthgs Jems btm t Hence +he prox. ! | Droblems yeletecl 0 conversion J NFA thlo D U Dconstrac & Dra equtwlent Jo “the Give NFA hesa)- sys ye] -M=(£% 09% 35 20519 ods Vosf4, 9D J where g ts eyiven by the +able 4 | States | 9 \ | b> % ls wo, SYN lo I) yet Ora | wwhexe, weg 2. d's Vo, F) oat Be £1 4els LNIs L400 15 \ c p s'- $0513 eo = L404 Wee's FLAIsL409F,53 s&tep © . \ dELVoIs OD = dl F%03 > D = 44023 " Bieilarly 3'( £43 D= dC $403.1 £03 ~3'(CwI,19= La) | neo Step © S142 W350):d (4405413 6) = 30 %.0)0d0% 30) = $40, V. 304 = £40395 | bd 'CL%54,3,0)- 1 %2% J] exist dD CLYe> MW Aste Jd CIV02N 351) = dCVorIUdS (491) = RWI OFG0.43 = £40993 “d'C £4 054,350) LIA I| Orise step @ 3'( E43 509» SCAMG.8) ra TLH 3-8 Si mila J 'ryan 2d (14.3.0) T4094 3 | - 5'(£4,I,1) = L%059,) )extst “The -+transttfoo Priacles oO table Jor DFA S2raed [Tend | rat RLV [LGW | C40%] KES ® 04 024,9 othe eqyutva font ® Convert NFA thio (| Stotes ° DFA Jovy the qe NFA ts «us eqewatlent Ora LL arcdes © | red rej [2 crease | cpay | Pd [pv ZIEP, ord | read IBY, DO] ©P4,73 let ora om! = (8's 2's d', Vos FD } 6 §rPd.rq30 IT. Ep Lyd, anda. | zee aro | el ® =EbI fone | Jo guia d': a d’? ( (P43, 0) = 3 (LPF 20) : — = ThY3 EF d'(IPV oy- [Pay io | Ai mila de EPID =d (FP3 49 = 4p3 Sr J! (LPsq32 0) = dl 4P24 4,0) = d (P56) U dC456) = {Pov} 0p =FP 3 | “ d'(iP.430) = Lea] exhat Sih lar d '¢LP29I+1) > SCE YING e spy vtr3 =4Psv¥ cs (ir. 4Jo1) = 0% exter Step®: J/(LR arto: J (LP. 5,0) 2 SCP,0)0 S(4,0) 0 dCr,0) = eqs v but =fpq.73 - ah -. 8 (1p, 999, 0) 2 IP v4): cated iri) av SCL) - FCCP.W73,1) 2 dC OdTL V dlr) © £PZu {y3ZusvI ~FP,y,73 | wut The dvansiton table 4ov Pra Stoctes oO ' rp rev) rp3 ye req) Tey * [Ryd Ipq,vJ req KIPW rpg Lead Th < eqrivalent =pFEA For the ger Nera oes a / 2 TUTORIAL ° For & gree NEA , fird ap equivalent a Lp! . GolP: soln: | yet DEA wee ee | whet@s : P4573} 3 | 6’: agentes Leas ERENT 33 ! 0513 states © vet Aah. Aas APS Be Rar ly | Feet ye dCEPS 0 APS Sees ee ag d'(L 9, 13,0) 40 FV01WS FV ' $40,413 Soln: | det Dra’ we (EVE WIE er | Ue § Tq0) > FWI+ T9938 ) 3 2 farb3 | 4 - kh) Joris {1UI, 1 10.35 | | Shortcuk : | Sis 8 | [%) [WW [o> ij | fad Pro) : Ia | Po) Bow) 1%). ag dl: hae A: | S(t, 0) = 3 (£903;0 2195 | tte) | Oe Ny 8! (T459,bd< F (F405 5) oS" CL 4b b) _ Lo 0VWiJ new = 42% 5 Shepa > a S'(L49.0) 2d C£4,%200= 2V02WS i SLY Dade Lo, Wd exist = tty : to di CLT, bed (£V,4, bd - $UY ee SCENT, b)= LVI eatat Pr Steps: . 6 dB (Lo W3ad-d C£%o9% 4,0) “a =d (%20) Ud (Tra) £43 0 $4043 é = 1% $1409, 0 = D443 eae a i f dg? CL%02V15) = db (4% 9, 356d q * dob) U d(%y 5b) = $49,W3 VFM & ic = {GoW a SEL V0,%1 32b9= \%0 4) extst \é | ic a ; ba © Oy gorenhate lw stra ind OMA OFA Ee For each slp cerbol, | For cath 2p Sumbol, tp ctheve ts exactly one \8 “these Bone OY tore Yancitton oom exch Stote syangrion from each Stat) yen sition Fpneton Ke “yang toh Fonction | The sl | | “lo, DEAR’ dIOXT 7S Lror NEA’ dB LF 579 | IFO ipo Q 7 5B -G2® pe--e— | | @ nea % eqoal-to DFA IP the Sense Of : "| { | tangoage acceptar@! . Tobey yoor ongwey. | aheetor®, \ Yes NFA B equa} -ro DFA Jn “the Genae (6 gn < acceptance. —+ ‘For eVery NFA. tve Cao conghoc® an eqwivalant Dra. Eunit. “cuctomata uth |par fon rn NFA wilh €- meyers i4 deg [5 tuple (8,20. VoiF). Uohere, ow a Finite «et of Aicles ae-% 0 Rete act % rps cyrmbols Yo. is a iprhetl — Setodd. cou o det & Final Siofe ) | g2k sthe frounsition chooction $: Ox eh G35 2% E- MOK : inecl by. &-—choso re [2™): : t a Q- Closere CQ)’ % clepttad aé ~the Bet oF 4 | Stobes ‘P. Soh thet, ere & a Palh From a atop labelled as. a a> Thed bh Tt the Get OF ibe loti u ee ° from qd. \e “tial S ® °F asa Sr : 4 Clove Yo) = £%,. 4 '% a ea closwvet4,) ~ 4,4, as AL & clogover qs) « £4, 2. OP rsa al Ys fe clogore Por earch ated ‘ Cree e308 ; &- swan © £122 4, 3.68 -$92,3,4,63 Mi G ~ closore (2) - $253563 f @ —closorecs> = $3563 § -closoretn) ie {hg ie clogorets) = £ B73 @ —closovele) = $67 A clasure(H) = THF 2 AX@ os a jes ave actepted oy vot. | and, ae Properties of _ closere J. % depihed ax, az Ba Cy.G). 2 Ec elocove Cape See Co, wood ~clasore (di ww J (4,29, « “8 le a Nee |) g.q- closore ¢£PiyPax Pn 30e & cclocore CPU Coe ooh Gq -clomove Pn) | Pro blems - velected to hte accepted by NFA | dh |. & - moves + © for nice Shown chek whelleer the Jellourty 3/P KO 2 > € Beso &> * 3h 21 ti oe. gol w Let weo) | we know heck | gcelesvye (4) = €V0, Vi 124 e-clogore CM) = 1 %nV29s & .clacore (Yo? * 1423: av is =Q). . staat (44,2) tr ar I (40): FY0.U. 225 Ha) ae saa oq, G) = ¢, clesove (aid ® pen fax, 6 = & ¢losore C42) 2 TV2 | Giver Weo) | Tien § (40,01 | Now, 3 to) : Y tosorergee (40, 49-2) a & ~closvre Cg € £4059) %2 HO) = & -clogvre (414019 vd(4130) 06 V2) = -closvre C{yoyup ob) = & ~closoye (qn) = 10.4 5 $10.4 0423 | Now, r S$ qo = -clasore cats Cod) i = @, closure (Cd CF Fos, »%y, 4s) 1 2 geclasure (d (Vor) 0d, Nod, 2 ge losdye 6 bUF% 9095 (U1) (i pet war Then gM, wer 8 (qo, &= F045 ow, . \ F qo, 29=q ~Closore (IY. : Eat “1D 25 = ¢~dosore WAM 44929) oh = § —closorel d(4o290d%,2)) ~ : U dF, 0) . €-clo Avve (0 0b uf723) 1 = Gc elodore Cay, I= £% ,A230F 2 AD G~ClosvreCF2) F403 | : an / : : 7 1 De a) ui actepted , | oie) Segngo a te ieee _ |Now, §Co,21%= Galadone | F pet F C40, 8840.41 929 | £5 CH qo). Glo, oy= (5 C861 40D = 4 closure 6 as)! = Gdlosore 6 § 6440/1 24230) ie % -clos vye (9) = & a = Comore Cf (Yo) UC%,2) 0 § (Yor 212 OFF |g, JCV20) 2% no taccoptead ,... |X = & clodore (F¥o4u bvaD ls $l40,0) = 6 - dosorerqod= fi £V0/417923 ea $cao,00) = @ -elesurec¢d'Cqo.9) ta 2G celosvre (d (440.914 3103 s -G-clogore § (0/0? Dd (4120 { Jd 42,0) & | = gclosove (403 U dvs) | 2 4 closore (Vo) = fo, Aa} Ig . ‘ (O0,007.9= %-closvre 5 td g "C0300, 2)) qe aC Closarld (£909 %) 1423, 4 = G.clogore JCI? vd (had) S bv bu S403 0 RT BE 5 . 002, re aclep rect A Ls Ni iar | eee as oy ee Se a aie 83) Eeutvalence of NFAY hth and ustihout — & mov as 8 icq, | é af _potoet * >), | Theorem. \ 24 ’ aT i Tye lls oes y ‘NEA wth | mens hen b & accepted by ho ttee kino 4 —troves — 3 | Peooe: BROCE pet M = (8, Z 3d 9409 be @ > NFA loegne MB Nem catthodt G-roevas Fog & ~ NOE AM 1 (8) Ed) Te ,£') wohate ynr $4 {contains the LFth G-moves | ' | ie ee ee closure (Ve fal grote oh Mm 4 F otherwise “mM hee 90 & - move) ant gaa) ( Bj_toduchieo J ond d are Same -dand g we dighe vent ie a be amy OE shat Jia ~ 5 (ed oO Chow xe &) becaude tht aredement ce vot tee Fh |g cqo,4) A403 ard db (40)? E -clogere to) | Baste step: lea too Ate th one. 12,464 JS'C40.00- (40.8) CRY def? of 3") A Bsenne -phot JiCqooxd2d 6? Jor ang | Stang 2% % Jongth £9 | Now we prove the yesuttys For ahing pesume LO & @ ahing of, iergth h Let a = WO Now, we must Khow sthetc % length nat \ 3'(1o, wa = 3 C%e,wWa) 5’ C40 wad = S105 (4, 0),.0) \ = Si tpad C-' dlqo. wr=d’ Ve sw =p) a qer B°L%.0) i » FCap, a Yep = Bera -¢ td (40,0, a> ~ = J CI 4 wa) a S40, ware8 (qo ur) Wente the yesult & toe for OD. \ . FA wath anid Se “piotierns related — to equfvatent® wheat fe raves | t. Constvuet NEA cofiiont Go nae S spor TA wth Qe moves ar ai” Sot + 7 : . uth Reemoc fl NFA , 8, J. FY be an 5 5,82 apt) be am A tofthout ee = MOS. yo find 1" a & checure (40) © 440-43 pre PEGs fo, Foe fae tid. : Yo find 8” Oe wet, . ° . € ge - elepere (46) = Sa0.05 7 Eq © closure cw > FU Lace): &7 closure £10493 § (aed = 3'C4e-0) + $00 d+ is 7, 9, - clesure (C8 (Aer G0)? ge eles (50 940.03.69) : closure ( (40.0) » 5641-09) e eq « closure UF roe: 1g dlosure ( sqezub) | = fe ~clostre (ne) . st . 40.44 , -" ob Mol) oe fg > dlasine e840, 9) 4 dy. olagune (8 E490..9)3 7199 eG -elosue (6149,1) 9 41) 2 str -ebane (80 $903) : = & + dlostne i) : 2. £43 ‘ ot ‘ fay |. : 1 eens - ] Ecay = Fear) . eggs onune (80840 8929) + tee clotene CE C1 00)) _ a = close (8) . [i (a0) tiny Stat) + Elan ; fede (eC) | | + fe + lose (£64,199 + & = elesune (41) §u3 ofS = Fay The ranatiten “fable Hey NFA wether! Ee = Teves. my 7 ' 7 stares San | : ‘ 4 i We equivalent yop 5 WFincuL Gee mows te the fen BA with fee meves ty fo eonatiuct NTA atheut Gs moves for wea with ee + mome vw | 8 Gs G i felt, gn MIA ath Ge eves ue, mie (a, Fhe Wr) . Metre Me (eas) 6191) be an NFA wftheut & = moves te gird Ge = closure CA) # $4049 3 have ce ru bP afiner fe -ctasure Cae) & havi ae a a F100 dF te ffhd 8° CSS & - closure (40) + F0,09.90% . G+ closure CH) © TdF fe - clesure (99) * $08 $ cae) = & = clesure (te) > $40.4.498 £ Carte) © fe - closure C1) © £4, .993 8 C%0.%) 2 & 7 closure (%2) = £492 step © . § (40.0) + B(ae-9) . 2 &e closure C5 C8 (Fe, &) 015 = fo- clesure (£0340 492% 00) fe ~chesure (804-6) © 81 YU 8@s,.0) clecure C0 Us vt) ae CV) cles Eran + Start clecuve O86 8640. HI) SL clecuive 766 Te AI) cs olecure (F(a) OS CRN veer.) cheoume CEUUUAD, fe etecuve CUD ‘ Fareed [ Fran + gaa May. { re 8 CEO V0. 6929) eg. - cteserre CE Ye V9 wd -clasure [Ri qerr) US C4270 £(42-99) -clesine (2 bd ae) g, - elasuve C49) sie Oe S Jl = F641 90) = & -clasu vel SCS (17 09) _clasure (SCF % > V2 %20)) g-clogured OV > 0) vd (Ya3 ue) i oo) = & - closure = ~ctasure (4) 7 Now - gic 2d Cw? > q closure (CE C41 2 49219) 2 G-closured GU 7 V23) aD) = & closure Cd (V9! Vv dlV23))) = 4 closure VW Uv 4) = Glo gore CVD Aindlasy ! n 3 (192 = 36192) 2G -clesure ChCHCV1 2 4929) 2 G closure Cd $V12424%5D = @-clagure 646 CUD V SCF 2 023) = &- cto serve 40 V2) = & -clogu re V2) A “The transition 40.6% for NFA _ Step - @ eee $42 209= SCY 290) : =@ — closure (8 08042» @) 0D 2G ~ closure (SCL %I20D = @- closure CY, 00) - & -clogure (4) - % ~ Now g 6%") -3 C4 p01) = G-olosurve (CS C%204) 19 =@closvre (g 4V29) od = ¢-clorvre § C251) : Pa) Eres Simila hy ‘Cq - 5 ©%z2 92D ee = @ Upaure (6C V2 92) = % -Chegure SCV » ) =e __clogere C%2) i 84,32 = $24 LW V2 ° penal ae Tutovia! a, yq))) eb b 1 Se Solp: - ROY NFA wt G-moves M= (CR323d,Foh) | Degin€ Mi = (&, %54', Yorr? TO Rtad eh q ~ closvre! Jos {G02 Vy OF F b ele “eS 4423 | TO Find ¢': | ETelesure. (0) = 140903 | closure (> = AW ¢, ~ Closure (v2 = 1423 G C02 4 = 4 clodure C9 FY V9 d (015%) = % -clasure CH d= $49 f (427g) = Gi-clotuve Cla? = £423 Step a: Fae 84979 = & eclasure( ded (os sb) | = & - closure Ud CF Vos% 4s 69) = G-cloduve ld (Yo 2b) ud lV, 569) = 6 dare C40 vb oy . = ly ~clgsurve lo) §'(q0sb) ~ 14023 My g’eqne) = Se % 3) ; - » 4 cloguye (S (8 C40 9420 =6-claswe (d($%4, 5a) | = closure (54020 Ud (4,303) | = Fi closurd 6 ¥§ G40. Ge ee v giclasive cq.) [Toads ia5] "Ug 5 b)- 3 C496) rr eg -clesure CI Cd 4436)5b)) ~4- clorsare (6 (4) 569) = §-tlosure (6) iu ica, 2 = Gf CW 2a) d ‘ = G ~tlogure Cg C$. 2G, 220) » = G ~closnre (§ e412) ~ & - rloguve(q,.42) ' = & -clesurelqd Ug closure ch) J Lay» = 4% 5424 > slep3: C220) ef q 9 3a) =G- _ clogure ¢ (étd 6%. 5 6)20D) = G- closure (6 442424) = : ~clostrve(o) (aaa fi cq = =f Cab) yd Ce =G -tlosure [9 Y'CI2.> 8)» b> =§~ —clesure (6 C424 6) =G Clesure C42) C43 95) -492% isis ~ The hangitin table fs, , stato asp) £b + \ 5 \ FA | Pape [P44

You might also like