- untt-4 Automation
“Intoductton eRe
whet ts compertertfon 2
computation Ws a sequence silops, thal car
be pe omed by a computer. uA : ; :
The. Th 1, tompuctertton has yarige
applicctibns th Comprler lesigqn,!' Hes 3
aorttgt etd rrlelt ee no oor ‘
senoroled fo. En ineorg -
Bask concept of Automored theo J a ee
© alphatet: :
denctis cities & oo intl “set of ayrobols
: Wz J Long ltl) B= FOrbrG ¥ sli) s $619 BBS
tag: vo "
ia hing (or) toord over On calphabe = moO
finite osidered © Liat of “Ambcls chosen, fro “the
Zz. 7 3
Eq: ooollos ol,|,0 are ssejrobols of “the alphabet :
se {013. : u ,
engih % ~Jhe ching cap be degined. aw
cymbe
ft the chin
Wr be a -Ahut then the length ¥
the |
the ho of
tel ,
| Sieg 9 N &- denoted bye I.
£4 jet “we cole
wis &
; @ Eroply | Now Sting :
Tg @ sting have no symbol (or) “the
tength of” the chit) ® 0, Hen” & ts called
Em airing | NULL © gting - “rpalon
nis denoted be Gry at
_—————tf , 2 , a Vi
)conrertonedtfon | 9% Strings:
Jet wand v be any ~lwo aes
alphabet =. Thee She — Concactenats
i apa BA ie certenatisn — v &
rs Fg: Dbets us Hello, Aes
vz) hort : tol
then Uv = Hellowortd,. + colhbamng 9
Orie wet tH brea af
1
A det hawhe . . pinits number 0 lement. &
BD iics tage ee PEERS by hla
7 ® iginile_set
if a. set heviny nek ‘puancbor "etient| |
4% called | ano “og, % |
Vo seogieg’ == fas bry!
Languages :
ae 6-8 at sto 36, 804,8
, Leng Ae
ret ‘=! be an oles and =* be be
“Ket % alt stings over =-
of tring and Lfz*> ie alle
Over = Subsel Jeorlarn in
eg: = fa)b3 theo
$ Sea) b, ab ba, aa, bb, abay +23
by! sg'sanhs sebbde-4
the 1 =) fayab, ba bb3 “4
| Efntte ... AttomedaFA)
Whal fs Fintte audometo. ?
A Finite Acetomerta (FAD OY Einee stale
Atctometia (FSA) consist ef finite, estes ond
a Set Oo transiestions -Tyor one atte = tO
Cthothes Stee.
A File artormata can be ohvided thto 3,
“Fypes. Thy are,
Fite cstecte “Automata C DFA)
I Del¥rm mise
9. Non. Detesminish finite tals Acctometa.:
(NFA)
oSA: peterministte Finite state Automata (DFA) :
i For >
, ¥ Fyom. each input symbol) ig “there &
|
exact stot
AAC om ches “trons 146 fon m each Store
|
-then fintte axectometen, ts ested “0 he DEA.
Eq:
eI J > (Py Se Josby
| 3 Grates
020? =X, sre = % kMD%
‘ Ae i
ee rai boa fo.
| Rommel gehen Tom RH Ys
Ae ED FES eee -tuple (OQ 2d. 403 e)
mhete, 3 c
|g sharinite set of stoted
Fis a Rinte set Y Tip Syeobo!
p> & he Ririal’ tote ” oO
poe che Set of: Bipal frotes
Pemetion
| she — Tarsitron funchdr h Dra clog tec
(as OS LW D=P wv, pear aee
WS Cv, Wd (dtd 9s 0d
Transttton Dibq rar [21]
The Transition oli agram osocietted with
Ora B&B a anected ara twhoge vertfcers
ane the Boles of The edgas &
the — gragh ate the Peaingifon A ror one
Bree — fo another = tale
EQ’ ‘let DRA me (= $4054 9455 > Ez Losby,
| % odoF=Sqeyy' ©
whee, f° Coo >be cleprtect Os 5 664059 =9,,fStop, 12229 db C42 9 b= Vi
Thestepore the — -hromnéition chagyram
Dra “ts :
fpr “the given i
3O-Q=D : ae , WG
Transition able: @
The table. twhich Yvepresents ahe list at
Trane tion yoo YS or function % % pie
ectomata & called *trensPtibn stable oes
9: :
pet Dea m= (8= $40,%,545 9,5 =$95b39, Fords
F =a) 4
wheie d can be ep) ned a ‘ |
BS (40.9 24, > DLUW 2024s 1 SCM b2= 4, 1 |
w The transrfion table oy -the. given DFA k |
| states a b |
| “|
| Vo 4% -
Y, Go r
Vo - 4,
| Language accepted bu DEA: es
The Sting x f&. Saf) fo be cccepted
ee ginite Ghevfe Arefomect if dCYosr O=P
fer Some p @ Fi
The Collection 6 » acceptect stingsB called — tanqua a. a
o" ae accepted ‘avd Sore 7
ated
| by Lem). saoewee Socata rage >
| Fe, [ems eter Fard chow ents
|
Problems Related Yo fanquaqe a fe eee
¢ ae tip
| @ chek whethey a shi taaner of
laccepted (or) NO. by the “eteotog automata?
. aabe -w
een Aba’ Not
) Solr: :
Gitven w = aabe ij
Pde aabe) = 03
“2g CURED
= d (5 (4120) >bed
| zg 6% oO
= dC dt% 2 OO
= db O%1 20) 2 4, EF
~aabe & aceptel |
—
|@ rs ~the Shing (i) boa Gi) co ave aceried
| (or) net by the above crerto matte ¢
(D GRven w= bAe ee
Jd (%0> boas (d 6% 9 #6), 00)
= 66400)
=
1" 50000, --* 7
conclue
& (im % ihe Aad Of al hings
Wwelh an -eveh number of ols and tyen? not
Wg. r
—_—
2Non defermnistic FPnite sttede Auclomata (FAD:
Formal Daten NM
che nea Ys .cpeapd by P “etuuplécs
(8, = 50> Vo» F) rt d
yonere a nite
ar, fo the Y sek roles
o_ & dhe Linke et % fnpudt sumbds
G- & the & Znitial gfacte J
eb ae finite act sind ctetes.J-9s the “Lranstien function
For each fps mol, Jp cthee a4 One Gre mere |
transition For eu’! pan , ther dhe > ‘firite
BY auslomada B cated NFA.” |
yy) 3°
fo-
|
fe a
4 The transition funefion
Od (4, Loa) = Vd Psa)
1D J (SP she oPss---Rd,00 =O dl Pp») FRR
d can be clef the} os
Lanauage .. Accepted by NTA!
A Lengua ik) aeepted by NS i |
estate to “both F Ond
Tim = 1widG,,wmexog] = ¥ |
Problemnds related fo Languare crecepsted by NPA:
t- Chee whether the ven Ahir ore
accepted or Not bi “Hie ona ausometa. ’
Dw, 2aa Ow, -aba~ GW Ww, abae oO nr B& f is .
artes
} W yet w,= aa
rh 8] Coq AD = J (dC40 242
| = dC $40249% 40
ats : 28( Vor BvdlGem Ud C%a7%
= $4044 94 5 ULF, %2 4 OP
= $96,4, U4 n= 545% $0
ond | he, Qa & accepted ,
| OD bet us, = aba
| S402 abar=d (dC Yor4 > ba)
)
oe ee Jd Cf Got, 5 %24> ba)
\ = Jd (%, bad v d(% > bad Ud C4) bad —@
la. Now 5
| § C%0> bad = d (d C4056) 5a)
= d(4050 = VU054,2%0%oT
|
Si ndlarty i
SCasbay= b CdCarob) 90)” :
= 30% sad= 7 ye 3
Now, :
bY 22 bD= FC SCV2 br.”
= dCb,ad=>
8 C40, aba) = $ Gar, 142 Gv fH r%2 98
= {4% 1,9DE = IDI +9
aba %& accepted,
iW) Let Ws =ab
bd (%02abd= J (5 C%2a)>)
: = db (4 40947%4 >b)
= dC Gob UV dl) UV d(Va,b)
$440 FU O o
$40 4,4 ne
F 9903
~ abe & not accepted tb 4 THM)
a. Fen ~lhe banque e exccepted a ~the
folte wth acto tm ator
d oO - er"
”
ye
LVeale Pe
Tm)= foo, lly. +--+ 3 4 hor 2m,
the an Nr &
States oO on
i ~4e_| 8402983 Tah 4
4, 6 Fy 4
@ | %9%4 $%%
Ve | 2443 é
$407 $43
| te} w_= 100
~ 804 > 120) =d (dC qos 1) 500)
2d (8045 rp)
| saee = 5 (or00) 05 7°
= S3C4200) VA CdC-Y, 9992 ©)
| | 5CIe%a Jou SC +P
| + dt4q30) ud (432
| © $0045 5 UE HS
= §Vo>%s ony 3OF =$4y 444
|
4 100 BD accepted
a, (oerLet w= lol
j SreRlaaley
dd 6 Vo 3"?
J (Vo07!0 = =d (402103) )
=d$l§Vo2N 4 201 S6Yo> WU SA 2a) |
= dCdC4o20)3 1) vd C4is0)) oo
= P4004 312UdCHD Ls
= 3 C4210 Ud 6%3 51D -
= RVW4 VG oe
= 34054, 3NF eo i
tol & not Accepted |
SHavbing
Fin the oad accepted by the i |
. Bs ending aba. |
|
ctuctoma, :
| Slodes a » e Ee a |
| Vo | F402% % £02428 ee
pM [As 448 A013 ins i
|
Ge fan % $422 VHS t424 /
wal 4934 2953 i
en be le
he aise NEA &
ret i
3 (ovo? 28) = 3(5C 0 9) 2%
= SCS 40241 32D
S3C e000) ¥ 30H 7
~d(%0>%) yd CVs 3%)
= F40> % Vie J OF
2 (444 Fe
= aa fs accepted 2
fe.» faa € a
WD pep we oP 5 56d
ab) 8036402 4
5 C40 7A YE G4 99)9 36D >
= § C4058) U6 6 Vorb)
a CVor%o) v CW
Gy oes ie
ab net accepted
=W) fet we aba
JDL Fo » x60) = d(SC05%) 5 ba)
= JC 4 %or 3, bad
=dC Vooba) V dCY,> ba)
=d Cd (Vo »b) 5%) Vd CIC%,6)50)
= 5(@0,%') 9 d(C ),0)
=d (wa) Ud (4%. ,4) ud CU, a)
= {%o%) v (4) v (hy, 2%)
=A%0 0% »V2, Wene oO
aba ft = actep
fie, aba € Tim)
‘y) rece Let We ACO
SCV0 ,accad = did C029), cca)
= dkVo% 3 y cea)
= dC Vo» Cea) v d(4, aca)
= d(dCGor¢)9c@) V dldL% ,¢), 00)
= § UV) 34, 08) U d GUY, ta)
- SC ola) Vd l4zg5ce) USC, 10)
= (hl%0, 0,0) 0 dQ% £),a) VICI 19,0)
a (vo »%3 4,0) ud UM 1%y,4,9) Vd ( Ha)
= dL Fo 99) Ud l% ,YUd(V3,0) Udy) Ud4,29)
ZN AGU $453 U 1350 LF4 UMHSWlet We aaa
g(or9a) = d(SC%0>9), 99)
= S(L4o2WY aad
= (Jorae) vCY, 29D
= J (Sl¥o204) Vdd 2% +)
. ee Ud AW IH 4.0)
. apd a) v Gl, 2%) VdCU
| $4504 Fr WH vt 03 i
2 GoW 1% BF
A445 +e |
ao =&% cxctepted
. =< € Tun)
Nien We abe
$ (Go, AbO = 6 Cd Co 50) 9be) f
= dC 440. U 32 bd
= d(Yos bd VIL bY
= fd (Yb) 0 © §(d CW DO)
= I EVV ye) VU one $4,3%>5c)
= d(Voodv d(G229 vd lM)
= $4024 40 1424 01S
Ios 7 ba, TRF = o
abc = nol accep
Re, abc # THO Design a firtte Autforeyto. fev the coving toni
Sofn: pee
let DRM 4=$8,5,d, %or™) ”
where | ao
B= TF. WI, Ve 3
= = fo913 4
Jo & an Trrtal Atele.
aad
J Can be deghel as,
Artotes Oo '
7: Vo - VY,
VY vy, | -
We Ve _
The finite Automata = Le
— )—— © 3) o “@)
@ reid comata > cohPch Occep ts
OS te ee st ard ode
only Hose Stemg
UF+th o.
Soln:
Gitven L= £ 1o,fOO,\05 loloo,. . - %
i DEN Ee a =, Jb. UW) ©)
wheie
Q= {404,542 3zf0,1k
qo an Patital ~<+ate
ee {Vad
g tan be degre 8,
totes \
® Dasho 9 Berit audometa! te
accept “the Ghihg "thet altoays en
00
@ven L= {908,100 » Soe oo loloes
oo ave crete Atforectta ts
B Desk La iri te cuctomata For -the Vang wae”
Le easy? | 815 :
© Solon
Gir ab, abab » ababab
“ The — Fidite nutoreate Es,
= Or Gs)=
We cetmne{ dean tntte artorctia bey
n
the a Lega” an 13 a
® Desiqn a cfitite arora tohich accept eld no. 4
& Ne and eal no O's. \
So jd
@tiven L= £1/05 bl, 100, Jolly M,....4 i;
The FA & |
° , :
! YD ‘
> oO
Cy — ]
® detan a cauto
mecto Lek
As q. % ole fer even po. of 1K ond
Solp:
GRven Le qoogit, oo, colt, Iolo + +4
<<
3G 0
(
ie!
ace anal NEA:
| eytelne_§ me SE
| Theorem:
rope \é
cStafeme nt
For every
povelent DFA
Siatement- |
let L be & leimguceg® ace pred Paes
NEA , We can construct an :cs y
NEA . Then there ertats & DFA shel
“the Game tangueaqe “be digas sta cepts
Proag: di. 8xZg_. 28
Let Me (Q,2,4d7407F) be a NFA actepts ila!
|
’ 7 BS oR ONE
Define M = (8',2's 3!) do's FD BADER, poe
34 ™M hos A Stotes then Mi hae 2
ctherepore 8's $Y), L409 513... C0, G5, L 405
SS peat L Werte sid Oo \
qo > V0)
ates comtatns “the
‘ gel Oh
cle F & the , lates which st
pra} Btote wh NFA.
g° + paptne 6) 06 poset .
SLs fe a ag) EP re
i and only) if $4 U9 Yao 93 924)" SP io Pad BY
now we Shoo thet \RB> = Lem
we prove by fecloction on the vength
tthe toput suing w thet -
C49! 402 EPy Pao FA
4 and only i
Jo, w) {Pio Pe, 9%
Bask step *
agp wo 16 4 length oy {w Ban empty Ghing)
S CLI, &) = £04
& J (qo.g) - F903
Tod vehon jxteps:
that the vesulis & tue For
Suppase
the ipod Bbtngs of ler th ntor) leas,
Now, we poithe ahak the, results tor5
stings length
tet waa be ao Siikg — whth x havin
length n and Az, Then by focluction assumnplin |
dC 4o'5 1a) > d'Ud'C 40290) t :
eg as a
oe dg CLR a Poa Ta) .
3 ye ;
| Sd lip, ops ge -
Thus
1
dF (A'9 20D: Ex trashy oe Me]
ed (40) xad Se oe
Hen a the yesult & Wwe for o1ny length |
Of Atrthgs Jems btm t
Hence +he prox. !
| Droblems yeletecl 0 conversion J NFA thlo D
U
Dconstrac & Dra equtwlent Jo “the Give NFA
hesa)- sys ye]
-M=(£% 09% 35 20519 ods Vosf4, 9D J
where g ts eyiven by the +able 4
| States | 9 \ |
b> % ls
wo, SYN lo
I) yet Ora
| wwhexe,
weg 2. d's Vo, F)
oat
Be £1 4els LNIs L400 15
\ c
p s'- $0513
eo = L404
Wee's FLAIsL409F,53s&tep © . \
dELVoIs OD = dl F%03 > D
= 44023
"
Bieilarly
3'( £43 D= dC $403.1 £03
~3'(CwI,19= La) | neo
Step ©
S142 W350):d (4405413 6)
= 30 %.0)0d0% 30)
= $40, V. 304 = £40395 |
bd 'CL%54,3,0)- 1 %2% J] exist
dD CLYe> MW Aste Jd CIV02N 351)
= dCVorIUdS (491)
= RWI OFG0.43 = £40993
“d'C £4 054,350) LIA I| Orise
step @
3'( E43 509» SCAMG.8)
ra TLH 3-8
Si mila
J 'ryan 2d (14.3.0)
T4094 3
|
- 5'(£4,I,1) = L%059,) )extst“The -+transttfoo
Priacles oO
table Jor DFA
S2raed [Tend | rat
RLV [LGW | C40%]
KES ® 04 024,9
othe eqyutva font
® Convert NFA thio
(| Stotes °
DFA Jovy the qe NFA ts
«us eqewatlent Ora
LL
arcdes ©
| red rej [2
crease | cpay | Pd
[pv ZIEP, ord | read
IBY, DO] ©P4,73let ora om! = (8's 2's d', Vos FD
} 6 §rPd.rq30 IT. Ep Lyd, anda.
| zee aro
| el ® =EbI
fone
| Jo guia d':
a
d’? ( (P43, 0) = 3 (LPF 20) :
— = ThY3
EF d'(IPV oy- [Pay io
| Ai mila
de EPID =d (FP3 49 = 4p3
Sr
J! (LPsq32 0) = dl 4P24 4,0)
= d (P56) U dC456)
= {Pov} 0p
=FP 3 |
“ d'(iP.430) = Lea] exhat
Sih lar
d '¢LP29I+1) > SCE YING
e spy vtr3
=4Psv¥
cs (ir. 4Jo1) = 0% exter
Step®:
J/(LR arto: J (LP. 5,0)
2 SCP,0)0 S(4,0) 0 dCr,0)
= eqs v but=fpq.73 - ah
-. 8 (1p, 999, 0) 2 IP v4): cated
iri) av
SCL) - FCCP.W73,1)
2 dC OdTL V dlr)
© £PZu {y3ZusvI
~FP,y,73
| wut
The dvansiton table 4ov Pra
Stoctes oO '
rp rev) rp3
ye req) Tey
* [Ryd Ipq,vJ req
KIPW rpg Lead
Th
< eqrivalent =pFEA For the ger Nera oes
a/ 2
TUTORIAL
°
For & gree NEA , fird ap equivalent a
Lp! .
GolP:
soln:
| yet DEA wee ee
| whet@s :
P4573} 3
| 6’: agentes Leas ERENT 33
! 0513 states ©
vet Aah. Aas APS
Be Rar ly
| Feet ye dCEPS 0 APSSees ee ag
d'(L 9, 13,0) 40 FV01WS
FV '
$40,413
Soln:
| det Dra’ we (EVE WIE
er
| Ue § Tq0) > FWI+ T9938
) 3 2 farb3
| 4 - kh)
Joris {1UI, 1 10.35
|
| Shortcuk :
| Sis 8
| [%) [WW [o> ij
| fad Pro) : Ia
| Po) Bow) 1%).
ag dl:
hae A:
| S(t, 0) = 3 (£903;0 2195 |
tte) | OeNy
8! (T459,bd< F (F405 5)
oS" CL 4b b) _ Lo 0VWiJ new
= 42% 5
Shepa > a
S'(L49.0) 2d C£4,%200= 2V02WS i
SLY Dade Lo, Wd exist =
tty : to
di CLT, bed (£V,4, bd - $UY ee
SCENT, b)= LVI eatat Pr
Steps: . 6
dB (Lo W3ad-d C£%o9% 4,0) “a
=d (%20) Ud (Tra)
£43 0 $4043 é
= 1%
$1409, 0 = D443 eae a
i f
dg? CL%02V15) = db (4% 9, 356d q
* dob) U d(%y 5b)
= $49,W3 VFM & ic
= {GoW a
SEL V0,%1 32b9= \%0 4) extst \é
|
ica
; ba
© Oy gorenhate lw stra ind OMA
OFA Ee
For each slp cerbol, | For cath 2p Sumbol,
tp ctheve ts exactly one \8 “these Bone OY tore
Yancitton oom exch Stote syangrion from each Stat)
yen sition Fpneton Ke “yang toh Fonction
| The sl
|
|
“lo, DEAR’ dIOXT 7S Lror NEA’ dB LF 579 |
IFO ipo Q 7
5B -G2® pe--e—
|
| @ nea % eqoal-to DFA IP the Sense Of : "|
{ | tangoage acceptar@! . Tobey yoor ongwey. |
aheetor®, \
Yes NFA B equa} -ro DFA Jn “the Genae
(6 gn < acceptance.
—+ ‘For eVery NFA. tve Cao conghoc® an
eqwivalant Dra.
Eunit. “cuctomata uth |par fon
rn NFA wilh €- meyers i4 deg
[5 tuple (8,20. VoiF). Uohere,
ow a Finite «et of Aicles
ae-% 0 Rete act % rps cyrmbols
Yo. is a iprhetl — Setodd.
cou o det & Final Siofe )
| g2k sthe frounsition chooction $: Ox eh G35 2%
E- MOK :
inecl by.&-—choso re [2™): : t
a Q- Closere CQ)’ % clepttad aé ~the Bet oF 4
| Stobes ‘P. Soh thet, ere & a Palh From a
atop labelled as. a a>
Thed bh Tt the Get OF ibe loti u
ee ° from qd. \e
“tial S
® °F asa Sr : 4
Clove Yo) = £%,. 4 '% a
ea closwvet4,) ~ 4,4, as
AL & clogover qs) « £4, 2.
OP rsa al Ys fe clogore Por earch ated ‘
Cree e308 ;
&- swan © £122 4, 3.68 -$92,3,4,63 Mi
G ~ closore (2) - $253563 f
@ —closorecs> = $3563
§ -closoretn) ie {hg
ie clogorets) = £ B73
@ —closovele) = $67
A clasure(H) = THF
2 AX@ osa jes ave actepted oy vot.
|
and, ae
Properties of _ closere
J. % depihed ax, az
Ba Cy.G). 2 Ec elocove Cape See
Co, wood ~clasore (di
ww J (4,29, « “8 le a Nee
|) g.q- closore ¢£PiyPax Pn 30e & cclocore CPU
Coe ooh Gq -clomove Pn)
| Pro blems - velected to hte accepted by NFA
| dh |. & - moves +
© for nice Shown chek whelleer the Jellourty 3/P
KO 2
> € Beso
&> * 3h 21 ti oe.
gol
w Let weo)
| we know heck
| gcelesvye (4) = €V0, Vi 124
e-clogore CM) = 1 %nV29s
& .clacore (Yo? * 1423:
av is =Q).
. staat (44,2)
tr ar I (40): FY0.U. 225
Ha) ae saa
oq, G) = ¢, clesove (aid ® pen
fax, 6 = & ¢losore C42) 2 TV2
| Giver Weo)
| Tien § (40,01
| Now, 3 to) : Y tosorergee (40, 49-2)
a & ~closvre Cg € £4059) %2 HO)
= & -clogvre (414019 vd(4130) 06 V2)= -closvre C{yoyup ob)
= & ~closoye (qn) = 10.4 5
$10.4 0423
| Now, r
S$ qo = -clasore cats Cod)
i = @, closure (Cd CF Fos, »%y, 4s)
1 2 geclasure (d (Vor) 0d, Nod,
2 ge losdye 6 bUF% 9095 (U1)
(i pet war Then gM,
wer 8 (qo, &= F045
ow, . \
F qo, 29=q ~Closore (IY.
: Eat “1D 25
= ¢~dosore WAM 44929) oh
= § —closorel d(4o290d%,2)) ~
: U dF, 0)
. €-clo Avve (0 0b uf723)
1 = Gc elodore Cay, I= £% ,A230F 2 AD G~ClosvreCF2) F403 |
: an / : : 7 1 De
a) ui actepted , | oie) Segngo a te
ieee _ |Now, §Co,21%= Galadone | F
pet F C40, 8840.41 929 | £5 CH qo).
Glo, oy= (5 C861 40D = 4 closure 6 as)!
= Gdlosore 6 § 6440/1 24230) ie % -clos vye (9) = & a
= Comore Cf (Yo) UC%,2) 0 § (Yor 212 OFF |g,
JCV20) 2% no taccoptead ,... |X
= & clodore (F¥o4u bvaD ls
$l40,0) = 6 - dosorerqod= fi
£V0/417923 ea
$cao,00) = @ -elesurec¢d'Cqo.9) ta
2G celosvre (d (440.914 3103 s
-G-clogore § (0/0? Dd (4120 {
Jd 42,0) &
| = gclosove (403 U dvs)
| 2 4 closore (Vo) = fo, Aa} Ig
. ‘
(O0,007.9= %-closvre 5 td
g "C0300, 2)) qe
aC Closarld (£909 %) 1423, 4
= G.clogore JCI? vd (had) S
bv bu S403 0 RT BE 5
. 002, re aclep rect A
Ls
Niiar | eee
as oy ee Se a aie
83) Eeutvalence of NFAY hth and ustihout — & mov
as
8
icq, | é
af _potoet *
>), | Theorem. \
24 ’ aT
i Tye lls oes y ‘NEA wth | mens
hen b & accepted by ho ttee kino 4 —troves —
3 | Peooe:
BROCE
pet M = (8, Z 3d 9409 be @ > NFA
loegne MB Nem catthodt G-roevas
Fog & ~ NOE
AM 1 (8) Ed) Te ,£') wohate
ynr $4 {contains the
LFth G-moves |
' | ie
ee ee closure (Ve
fal grote oh Mm
4 F otherwise
“mM hee 90 & - move)
ant gaa) (
Bj_toduchieo
J ond d are Same -dand g we dighe vent
ie a be amy OE
shat Jia ~ 5 (ed
oO Chow
xe &) becaude
tht aredement ce vot tee Fh
|g cqo,4) A403 ard db (40)? E -clogere to)
| Baste step:
lea too Ate th one. 12,464
JS'C40.00- (40.8) CRY def? of 3")
A Bsenne -phot JiCqooxd2d 6? Jor ang
| Stang 2% % Jongth £9
| Now we prove the yesuttys For ahing
pesume LO & @ ahing of, iergth h
Let a = WO
Now, we must Khow sthetc
% length nat\ 3'(1o, wa = 3 C%e,wWa)
5’ C40 wad = S105 (4, 0),.0)
\ = Si tpad C-' dlqo. wr=d’ Ve sw =p)
a qer B°L%.0) i
» FCap, a
Yep
= Bera
-¢ td (40,0, a> ~
= J CI 4 wa)
a S40, ware8 (qo ur)
Wente the yesult & toe for OD.
\ .FA wath anid Se
“piotierns related — to equfvatent®
wheat fe raves |
t. Constvuet NEA cofiiont Go nae S spor TA
wth Qe moves
ar ai”
Sot + 7 : .
uth Reemoc fl
NFA
, 8, J. FY be an
5
5,82 apt) be am A tofthout ee = MOS.
yo find 1"
a
& checure (40) © 440-43
pre PEGs
fo, Foe fae tid. :
Yo find 8” Oe
wet, . ° .
€ ge - elepere (46) = Sa0.05 7
Eq © closure cw > FU
Lace): &7 closure £10493
§ (aed =
3'C4e-0) + $00 d+ is
7, 9, - clesure (C8 (Aer G0)?
ge eles (50 940.03.69) :
closure ( (40.0) » 5641-09) e
eq « closure UF
roe:
1g dlosure ( sqezub) |
= fe ~clostre (ne) . st .
40.44 , -"
ob Mol) oe
fg > dlasine e840, 9) 4
dy. olagune (8 E490..9)3 7199
eG -elosue (6149,1) 9 41) 2
str -ebane (80 $903) :
= & + dlostne i) :
2. £43 ‘ ot ‘
fay |. :
1eens - ]
Ecay = Fear) .
eggs onune (80840 8929)
+ tee clotene CE C1 00)) _ a
= close (8)
. [i (a0)
tiny
Stat) + Elan ;
fede (eC) | |
+ fe + lose (£64,199
+ & = elesune (41)
§u3
ofS = Fay
The ranatiten “fable Hey NFA
wether! Ee = Teves. my 7 '
7 stares
San | : ‘
4 i
We equivalent yop 5
WFincuL Gee mows te the
fen BA with fee meves ty
fo eonatiuct NTA atheut Gs moves for wea
with ee + mome vw
| 8 Gs G i
felt,
gn MIA ath Ge eves ue,
mie (a, Fhe Wr) .
Metre Me (eas) 6191) be an NFA wftheut
& = moves
te gird
Ge = closure CA) # $4049 3
have
ce ru bP afiner fe -ctasure Cae) & havi
ae a
a
F100 dFte ffhd 8°
CSS
& - closure (40) + F0,09.90% .
G+ closure CH) © TdF
fe - clesure (99) * $08
$ cae) = & = clesure (te) > $40.4.498
£ Carte) © fe - closure C1) © £4, .993
8 C%0.%) 2 & 7 closure (%2) = £492
step © .
§ (40.0) + B(ae-9) .
2 &e closure C5 C8 (Fe, &) 015
= fo- clesure (£0340 492% 00)
fe ~chesure (804-6) © 81 YU 8@s,.0)
clecure C0 Us vt)
ae CV)
cles
Eran + Start
clecuve O86 8640. HI)
SL clecuive 766 Te AI)
cs olecure (F(a) OS CRN veer.)
cheoume CEUUUAD,
fe etecuve CUD ‘
Fareed
[ Fran + gaa
May. {
re 8 CEO V0. 6929)
eg. - cteserre CE Ye V9 wd
-clasure [Ri qerr) US C4270 £(42-99)
-clesine (2 bd ae)
g, - elasuve C49)sie Oe S
Jl = F641 90)
= & -clasu vel SCS (17 09)
_clasure (SCF % > V2 %20))
g-clogured OV > 0) vd (Ya3
ue)
i oo)
= & - closure
= ~ctasure (4)
7
Now -
gic 2d Cw?
> q closure (CE C41 2 49219)
2 G-closured GU 7 V23) aD)
= & closure Cd (V9! Vv dlV23)))
= 4 closure VW Uv 4)
= Glo gore CVD
Aindlasy
! n
3 (192 = 36192)
2G -clesure ChCHCV1 2 4929)
2 G closure Cd $V12424%5D
= @-clagure 646 CUD V SCF 2 023)
= &- cto serve 40 V2)
= & -clogu re V2)A “The transition 40.6% for NFA
_ Step - @
eee
$42 209= SCY 290) :
=@ — closure (8 08042» @) 0D
2G ~ closure (SCL %I20D
= @- closure CY, 00)
- & -clogure (4)
- %
~ Now
g 6%") -3 C4 p01)
= G-olosurve (CS C%204) 19
=@closvre (g 4V29) od
= ¢-clorvre § C251)
: Pa)
Eres
Simila hy
‘Cq - 5 ©%z2 92D
ee
= @ Upaure (6C V2 92)
= % -Chegure SCV » )
=e __clogere C%2)
i 84,32 = $24LW V2
°
penalae
Tutovia! a,
yq))) eb b
1 Se
Solp:
- ROY NFA wt G-moves M= (CR323d,Foh)
| Degin€ Mi = (&, %54', Yorr?
TO Rtad eh
q ~ closvre! Jos {G02 Vy OF F b
ele
“eS 4423
| TO Find ¢':
| ETelesure. (0) = 140903
| closure (> = AW
¢, ~ Closure (v2 = 1423
G C02 4 = 4 clodure C9 FY V9
d (015%) = % -clasure CH d= $49
f (427g) = Gi-clotuve Cla? = £423
Step a:
Fae 84979
= & eclasure( ded (os sb) |
= & - closure Ud CF Vos% 4s 69)
= G-cloduve ld (Yo 2b) ud lV, 569)
= 6 dare C40 vb oy .
= ly ~clgsurve lo)
§'(q0sb) ~ 14023
My g’eqne) = Se
%
3) ; -
» 4 cloguye (S (8 C40 9420
=6-claswe (d($%4, 5a)| = closure (54020 Ud (4,303)
| = Fi closurd 6 ¥§ G40.
Ge ee v giclasive cq.)
[Toads ia5]
"Ug 5 b)- 3 C496)
rr eg -clesure CI Cd 4436)5b))
~4- clorsare (6 (4) 569)
= §-tlosure (6)
iu ica, 2 = Gf CW 2a)
d ‘ = G ~tlogure Cg C$. 2G, 220)
» = G ~closnre (§ e412)
~ & - rloguve(q,.42)
' = & -clesurelqd Ug closure ch)
J Lay» = 4% 5424
> slep3:
C220) ef q 9 3a)
=G- _ clogure ¢ (étd 6%. 5 6)20D)
= G- closure (6 442424)
= : ~clostrve(o)
(aaa
fi cq = =f Cab)
yd Ce =G -tlosure [9 Y'CI2.> 8)» b>
=§~ —clesure (6 C424 6)
=G Clesure C42)
C43 95) -492%
isis~ The hangitin table fs, ,
stato asp) £b + \ 5 \
FA | Pape [P44