Fourier Transform Techniques
Fourier Transform Techniques
            ~{-l
                                                                                                               g the Fo uri er sine integra
                             --p < 1 < 0                                            10. Work Ex erc ise 6 using                             l pair.
                                                                                                                 the Fo uri er cosine integra
                               O <t <p                                              11. Using the Fourier cos                                 l pair.
                                                                                                              ine integral pai         r, express P(w , t) in
                              p< l < x                                                   ten ns of sine integral fun                                 0
                                                                                                                     ctions for
                          -ao < t < -1                                                                               O         - oo < t s - I
U IIOPElm OF FOURIER TR
.......
          .......      ANSFORMS
                    ......
                           ......
                                  ......
                                         ......
                                                ......
                                                       ......
                                                              ......
                                                                     ......
               • rcgra Jfur                                     · 1          J oo              .
                in                                      f(t)   =-                       F(w)e 1<01 dw
              ( l)                                                 21r           - oo
                                                                   f
                                                                        00
          a "mp
                   )
                       1
             . er coefficient function F(w)               ~ 21rC(w) is introduced Which ' since                             ,r
          F("' ,
                 . easier to write and tabulate than C(w). Thus in dealing With
                 IS                                                       .
            . for convenience, we shall henceforth use Formulas (1) and (2) E
                                                                                           112 1s not af
                                                                                       cornp/ex  Fourier
                                                                                                       . tra r                           ~~
         function
          pam. F(w) IS   . generally complex.                                        • Ven Whenf (1J IS~  . ~lrq0
                             f    1
               The process o mu tip · lymg
                                        · /( t) by e-iw1 an d then tntegrating
                                                                     .           from "" _                    a,if(
         single function F to each function f that satisfies the conditions of Th 1           "' to s 3ssig ..
                                                                                                                                          1
          Together,f and F, aS given by (1) and (2), are commonly referred to as the com¢exFm
          transform pair.
                 The Fourier cosine and sine integral pairs [Eqs. (20) and (21), Sec. 9.1] can also~"""'.
             as pairs of mutually inverse transforms. For reasons of symmetry. this is usually done bt                                   ~
             the numerical factor 2/ 1r in A(w) and B(w) into two.equal factors and ass,gnmg        ~_,,,
                                                                                        • · '".factor  to~
             integral
             pair in the pair. The cosine integral pair ·then becomes
                                                               ·      the ·so-called Founer
                                                                                         · cosme u=
             (5a)
                                                    /(t) ==    {i;_ f        00       Fc(w) cos wt dw
                                                  Fe(w)    =~
                                                                   7T
                                                                         r   o
                                                                                      f(t) cos wt dt
                                                                                                              J even
                                                       f(I) =    ~      7T
                                                                             r   0
                                                                                        F,(w) sin wt dw        J odd
                                                     F,(w)         /2 Joo
                                                               = \J-:;;,                f(t) sin wt dt
                                                                                  0
··1.ak. .llli.c
2      . _....,4:58                                        ~ = ~A(w)
,. ,, _- lflTEG'~)IID~rvvth '."··-=     e:
                                     sin:
                                 co· ·:     tra:ns~
                                                  form~pa ~ - (5 ) an d Eq . (7a) th
                                                            ir                              ~~~~(?.~=- =-- - - - - - -
                                                                          inverse F ~u ; function
                                                                                                  F (w) .                          56 3
                     th :s fo rm of J( t), an d f(t ) is the
                                                                                                          18
                                                                                        er cosine t;a        knoWn
 /'          In bo
                                                       tra ns fo rm at io n CZFc,                     l'lsforrn of as  !he F .
                       tra h      Fo  ur ie r co sin e                                                            F (cv)       ou oe r
             cosine                                                                                                        th at is, in
               (111S of t e                                                                                        c     ;
                                                                                    ) gf - ,   =    ~( w )             (b
                       te                                          (a ) ;ffec ff( I) ]                                         r   [f'.:.(<.v)]    ===   /(t )
                       (8)                                                                      (l b) . the F
                                     F.( {JJ) in  th e sin e tra ns fo rm paIiir (6 ) an d Eq .        JS
                                                                                                              ouner s·
                                .                                •
                                                                               or m   of  F( w) 1                     in_e transtor
                        fun  cti on    s
                                                        ur
                                                           •
                                                           ie r sm  e  tr an s                        ter ms of the
                   T he       .    h   in  ve rs e  Fo                                     s    •  n
                                                                                                                    Fo er sin e Iran
                                                                                                                      un            ni ofJen
                          t) is   t  e                                                                                               sfo a-.
                   and J(                                                                                                                Tin
                       . n <!fs•
                  tJO                                                                                                                                   f(t )
                                                                  (a ) ~A f( t) ]             = F's(w)                (b) CZF; '[fr(w)J           ===
                                                                                           1: [ 1:
                The complex
                                                                     2), Se c. 9.1:
                        Fo uri er integral pa ir, Eq s. (11) an d (1
            The complex
f(t ) = J 00
                                                            -00
                                                                  C(w)eiwr dw
                                                                                                        [C om pa re Eq s. (7 )
                                                                                                                               an d (8), Sec. 8.5.]
                                                               ,
                                                      = - 1 Jae f(t )e -iw r dt
                                             C(w)
                                                           21r    -ac ,
                                                                      (1 6) , Se c. 9.1:
                       Fo uri er integral, Eq s. (15a), (1 5b ], an d
          The Standard
                                                                                      00
                                                                                           [A (w ) cos w t+ B(w)
                                                                                                                 sin wt] dw
                                                                  /(t )    =[
                                                                                  0
                                                                                                                                                                  ). and
                                                                                             Jae, /(t ) sin wt dt
                                                                                                   1                                    [C om pa re Eqs. (1). ( 10 2
         A(tu) :        ..!.  J"" f(t) cos wt dt                                  B(w) = -                                              (11), with d = -p . Se   c. 8- -1
                         .,,.
                             -   .                                an d
                                                                                         11'             -ac ,
         'lnepoUrier           ·
                                                       Sec. 9.1:
                             COsme integraJ, Eq. (18),
                                                                                                                                       / even
                                                                                      00
                                                                                              F ( l )e ,w 1
                                                                                                                d
                                                                                                                    l
                                                             2 7T(( - w) -            x.
                  as asserted.        t
                                              _l_
                                               a
                                                    r
                                                    - co
                                                           f(z)e - ;w,la dz= >[f(z)]_wla                                =   >( :)
                      The change of_ scale property is a1so
                  established in the same way.      .       valid for both the cosine and sine transformations and •
                      1HEOIEM 4           (Time Shifting)
                                           :,i[J(I - lo)]     =   r
                                                                  -oo
                                                                        f(z)e-;w<<+•~ dz               = ,-;,.,,,           J~
                                                                                                                            -oo
                                                                                                                                  f(z),-;w , dz
                         In words, the time-shifting theorem says that translating a function an amount lo in ' :
                  domain results in the transfonn of the function being multiplied by e-iwr • Conversely, as athIOO"'
                                                                                                                                       0
                                                                                                                                                  ~
               recovering_a functi_on from its transfonn, Theorem 4 asserts that if a transform contains in""''
               the form e ~". us mverse can be found by first deleting the factor e - ,w,,, then finding ·tbe a factc, l
               the remaining factor, and finally translating that inverse an amount equal to lo,
                    Since the transform F(w) can be Written in the complex fonn
              where r(w)
                      0 is the magniludc and            O(w) is the polar angle of F(w), it f0Uows <ha< trans . g/lfl5ll
              amount t in the             lime domain adds              -w,
                                                                 0 to the argument of F(w); that is,
                                                                                                             laun
2024.03.\1 8 il~:59.
                                                   ,-lfJ ra.-Sf~MS
                   -dlP ,,_                                                                                                 ,cncY Shifting ) 1f                                                                                                           wo is a real constant, then
      J.-, ,,.-                                                                                                       (frcQL                                                                                                                                                                                                                                                                                                                                                                                                                                                        567
    ,fll'"'r                    fO-E~ 5
/                         Ttf                                                                                                                                         ~ lei'<>o'.f(t)l = g; lf(t)J,.,__,. ,.,_,.,0                                                                                                                                                = F(w -                                                                         Wo)
                                                                                                              By definition.
                                    «              p~OOf
t ~ t It I It t
EDI
                                               I    t       I       t       t    I    I       I       t       I       I       I       I       I   I   I   I   I   t   I   I    I   I   I   I   t    t    t    •   t     t    t   t        t       I       t       I       I       I       I       I   t   I       t       t       t       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       t                                                                                                1 1 1 1 1 1 1          1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  I       I       I       I       I       I   t   t   I   I   I   I   I   It I     t   I                   t' t
               The method f    ·
                         o Partial fractions then gives
                                                                                                                                                                                                                                                                                                               -                                                                                                                                                                                                          a       + ((11 + al__l
                           F(w )                   =~ I                                                                               2a - w                                                                      '2a                 +                   w                       +((II + 0 ) !       ] _ _ l_ [ ~                                                                                                     'tJ - a) 2                                                             +
                                                                        8a 1 a2 + (w - a)2        I                                                                                        +            a2            +          (w                   +                   al -
                                                                                                                                                                                                                                                                                 I
                                                                                                                                                                                                                                                                                         ,
                                                                                                                                                                                                                                                                                        21(111 I- ,1
                                                                                                                                                                                                                                                                                                     l                            8aJ                                     a'2                     +                   (w - o)                                                                                     a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     l
                                                   ·- I l l      ,.,a         I                                                                                                                                                    2a               I - li(1u - aL, . . - ! rl1,; 1-,1l '
                                                   - -8 3 -      ~         + -                                                                                                                                              - - - - - - : : - 7·•- - -
                                                       a 2 a 2 + (w - a) 2                                                                                                                                                                                 I- ((tJ - (I ) l    1~ 1 ti
                                                                                                                                                                                                                            u 2 + (o> + a) 2
                                                                                                                                                                                                                                                     •
                                                                              2                                                                                                                                                                   21 tr .
                                                                                                                                                                                                                                                         '
                                                                                                                                                                                                                                                                                                        ·•~t, 1'
               Ac               ·                                                                                                                                                                                                                                                               ,t t,1;1,"
                   cording to b T·                                                                                                                                                                                                                                    . . . hi· 1.,~l pull \
                                                                                                                                                                                                                                            .     .. . .   o ll't u1s 111~1dl l
                                                                            ' able 9.2, and Theorem 5, the inverse ol the 111st                                                                                                                                                                                                                                                               iw
                                                                                                                                                                                               1        flt           1,11                        l
                                                                                                                                                                                                                                                                                                                                                                                                                                              {       -                   ()
                                                                                                                                                                                               2e ('                             _1                                   11/e                        /111 ::: ('Ill                                          COS (I{
                                                                                                                                                                                                                                 , - zl'
                                                                                                                                                          g (t)               ={               l        -     ti(           ill(              L               1                       11/l'                   1111 ::- {'                                                 111 ' l)S (I{
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          () -                                1
                                                                                                                                                                                               2e                     e                   · ir                ~t'                                                                                                                         (.;             •
                                                                                                                                    _u ".'°".HfflS OF FOU111 ~
                                                                                             we obtain
                                           ,     = -a
                             Noting that/ (O)
                                                        and solving for Fc(w),
                                                                                                 f;             a
F.C(W ) = -'TT Q2 + w2
                                                                      -w 2F,(
                                                                           ., w)      +       /2 wf(O) = a2Fs(w)
                                                                                             Y-;;
                                                                                                 /2 w
                                                                                  F_,(w)   =    Y-;; a2 + w2
                              .            .th he transfonn e, Table 9.2.
      ........... ........................................... . .. .................. ......... . .................. , • , .... ., ........
                           which agrees w1     I
                                                                                  F'(w)      = :?F[-iif(t)]
                              f   PROOF        By definition,
                                          F(w)     =   f-oc
                                                           00   J(t)e-iwr dt
                                                                                       and                F' (w)    = _:!_ [J oe f(t)e-iwt dt]
                                                                                                                         dw   -oo
                                                         F'(w)      =   f-co
                                                                            00   [-iif(t)]e-iwr dt           = :?F[ -itj(t)] t
                                                                                                                                                         ~-
~[if(t)] == iF'(w)
2024.03.18 1.'4:59. f              ,_
                                               11• r•ANSfOIIIII"
                                  ,.r4o FoU•                                                       are b
                                                                    f(t) and successive integral powers of
                                                                                                 1
                                                                                                                            S71
            _..-~-'s                                         s can be continued. leading to the form la solute\y inte
                                                 h products of
                                                                                                     ua               grabJe
    I'
           fll""..                        as t e d·ng proces                                                                   n
                           J\S 1ong the prece •                                                                              0
                           c-oe, c:,:;) ,                           ~[t''.f(t)] = i"F 1"l(w)
( J 2) •••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••
                         ••••                            = + b.,.
                                .••••.. •• •• • •• ••• • •
                                               I -      a           a
                                                                        nd k   ~ O an         integer. find the Fourier transfor                        •• · ··· ··············
                                                                                                                                               rn of the funcr, on
                                a.::. 0. b rea. ~
                         for
                                                                                         g(I) -
                                                                                                 _    {o' -,
                                                                                                                             ,< O
                                                                                                       f~e-                  0 < I
                                                                                         .f<r)    =   {o-,
                                                                                                        e·
                                                                                                                         I< 0
                                                                                                                         O<r
                        is given by
                                                                                                                                     I"' = - - -
                                                                   F(w)   =    fo
                                                                                    x     1
                                                                                        e~ e-iw, dr     = -----
                                                                                                                    ela+(/,-.w)i11
Z. - IW O iw - z
Clear IY, g -- 1k'f· Hence ' using (12) and the easily derived relation
we have
_,,.,, ............................................................................................................... .
                           In Sec. 2.9 we considered a particular combination of two functions called their convolution.
                      This concept, when extended to functions with more general domains, has many practical applica-
                      tions and is of fundamental importance to our further study of the Fourier transformation .
                         In rnan
                     tot given iyprobiems, a = 0, in which case we have the unilateral co
03)
                                                                               (J * g )(/) =           I   ()
                                                                                                                I   .f(,.\)g(t - ,.\) dA
                                                                                                                                                        9.3 PROPERTIES Of FOURIQ
                                                                                                                                                                                   "-Al!Sf~
                                                                                     .    ·r (-oc, oc) given by
                                                                                   uuoo ove
                                                                     1:11   coovo l
       577
               If a -
                       __
                            00
                                 ,   we obtain
                                                . the bi11:1tcr
                                                                  (f*g)(t) -
                                                                                      _       I     ,;:,
                                                                                                  . (P·
                                                                                                           f(A)g(/ - A) dA
                                                                                                                                                                                    ~
                                                                                                                                                                   '
                      Wt is natural to ask 1f the P             tly concerned with , we find that 1f two functi on J
                t u~ t                       k d we arc presen                                                          and
                 h
                integrals. which arc the ,n                                                                                                                                              '
                are repre~ented by                                                                                                               I    J C/., G(w)ei<,,, dw
                                                                                                                           g(l) == -
                                                                                                       and                                   2'1T
                                        f( t)   ===   !_ r )C   f(w)e;w, dw                                                                             -½
                                                      21T -"'
                                            .
                                      th dummy variable w in the first integral by A and in the second inteoraJ-
                 then, upon rep Iactng e                      .                                            o
                 µ,, the product off and g has the representation
                                                          f(t)g(t) ==       ~ f"'
                                                                            4~            -00
                                                                                                F(A)e;>.t dA                 f- oo
                                                                                                                                  00    G(µ,)e;,_,.r dµ,
                    Because the dummy variables are now different, we can write the product of the integrals ai ;1
                    repeated integral
                                                                        j
                                                           f(t)g(t) == 4~2            Joo Joo
                                                                                       -oo -oo F(A)G(µ,)ei(Hµ.)1 d.A dµ,
                                                        f(t)g(t) =          j
                                                                            ~2
                                                                                    Joo Joo                F(.A)G(w - .A)eiwr dA dw
                                                                       4            -oo       -oo
                                                                 _ } Joo [
                                                                 - 21r              -oc
                                                                                                j
                                                                                                  1r
                                                                                                           Joo
                                                                                                            -oc     F(.A)G(w - .A) dA                        ]e;w, dw
                                                                                              2
                                                                                                       1
                    The   sLructure of the last expre .
                    bilaleral convolution of the ssiofn shows that the quantity in brackets, narnd),11
                                                   1rans orms F( ) d                            f      l't ui, ►
                                                                                                                                                                             ?..
                                 on the left; that is,                                ·           w an               G(w), is the Fourier trans on
                 Ji( I)g(t)
                                                                                1
                                                      ?Jilf(t)g(t) I = -27T          J""      F(A)G(w - .A) d.A                              = --
                                                                                                                                                I fl£tl) * GlLtl)
                                                                                          ~                                                          ')
                                                                                                                                                     _ 'TT
2024.03.18 1~:59.
~   -~                            -
                               f()C.llllfll fllJNSfOllllilS
                                f (t) 1•s real, both i and the real variable Tenter only through th           .
                ,h    1 when                                  .    . b   .   d                      e product l't H
                u,a
                13 )..'.e the conJ
                                   •ugate   of F(T) by replacing L Y - L, an subsequently replace b                enCJ!. 1f 111~
                                                                                                     7 Y - -r w h
                                  nchanged. In other words, whatever the argument may bf' F( ) _ -F ' e ave lef· the
                  ansfom1 u                 -                          .                       ~, ,. - (- -r) I
                tr ' F ( _ w) = F(w - T). The convolution of F(T) with itself can the f                     be n Paricu ..:r.
                then. r                                                                              re ore     wntten
F(w)F(w - -r) dw
Now from this result and the frequency convolution theorem, we have
                                                     ,,------ 27T
                                                                  1
                                                     9f[/ (t)] = -F(T)                       * F(T) = - I
                                                                                                                       21r
                                                                                                                           J           00
                                                                                                                                     -oo
                                                                                                                                                F(w)F(w -              T)   dw
                                                                     Joo-oo
                                                                                 2
                                                                              f (t) dt          =-
                                                                                                      27T
                                                                                                          1           Joo
                                                                                                                      -oo
                                                                                                                             F(w)F(w) dw
                   th
               But e product of any number, real or complex, and its conjugate is the square of the ~c~,cli:t.:
               value of the number. Hence the last equation yields
                                                                          Joo
                                                                            -oo
                                                                                      f 2 (t) dt     =-
                                                                                                              27T
                                                                                                                  1     Joo
                                                                                                                            -00
                                                                                                                                      r 2 (w) dw
                                                                                                          ~
                                                                                                                              I •          ()
                                                                                        f(t)          {           '           I , ()
                 In thi
                              s Particular case
                                                                                                                                             r •''Ill,   -   1.
                                                                                                                                         2
                          - ,autrlElt Tl~1n: · · .. · · · ..                                                                             .. .. ..           . - - - - - - - --
                                                                                                                                                        -:---                                       -
        ,_.. ~            ··             wo factors of the last product are, respective)              · · ·
                                                                                                                              S7S
..- '
,.                 BY •·
                         fable 9.2, the t
                                           g(t) = e-21
                                                              t< O
                                                              0< t
                                                                     {o  and
                                                                                         y' the Fourier tr
                                                                                  h(t)::: {O         t <0
                                                                                                           ansfonns f
                                                                                                                   o the functions
                                                                                                                                                         e- 3,
                                                                                                                                                                      0< t
                                    .       are identically zero for t < 0. Hence, by Corollary 1
                     h of which                                                                  , Theorem 10
                  bOl
                                                J(t) =     L
                                                           e-2Ae-J<r-AJ dA = e-3,
                                                            o
                                                                                    eA dA = {O
                                                                                                              , the r .
                                                                                                                         J'
                                                                                                            t :s O equ,red inverse is
                                                                                                                         o                            e- 2, - e- 3,
                                                                                                                                                                             0 :s t
                              ·····························································
                  ,..~•~: inversef(t) of the Fourier transfonn F(w) = [4a sin kw)Jw(a'
                 Fin     .d d by Theorem 10, we express the given transform as the product ), a> 0.
                                                                                                                                                               +·~:· ·················•. , , , ,
                      Gui e
                                                                                                   2a                    )    (eikw_e-ikw)(
                                                        ~--(2sinkw)(
                                                               w     a                       2
                                                                                                   +            w2
                                                                                                                              =--- 1w
                                                                                                                                               ~)
                                                                                                                                            a2 + w2
                                                                                                                                                 •               --
                  .th == k and a                 = b = 1,       we see from f, Table 9.2, that the inverse of th e tilfSt factor .in F(w) is
                 W1 1
                                                                                       g(t)        =            {o   1
                                                                                                                                     ltl > k
                                                                                                                                     ltl < k
                 From b, Table 9.2, the inverse of the second factor is
                                                                                                                    eat                ts; 0
                                                                                      h(t)         ={               e-a,
                                                                                                                                       t~0
                                                                                                                                         r
              Hence, by Theorem 10,
                                                                  J(t)    =   r -oo
                                                                                      g(A)h(t - A) dA                                =
                                                                                                                                           -k
                                                                                                                                                     h(t - A) d!.
-k -a a at
             2. ltl s k: f(t)           =
                                          f
                                                 I
                                                -k
                                                     e-a(t->..)   dA    +   I
                                                                            t
                                                                                k
                                                                                    ea(t-A)
                                                                                                                         e-at
                                                                                                   dA == -;-[eaAJ'-1r - -;[e
                                                                                                                                                         e       -aAJk
                                                                                                                                                                      ,
             3
             ' t ?!:.   k: f(t)         =
                                          f      k
                                                            a
                                                     e-a(1->..)   dA
                                                                                -at
                                                                        = _e_ [ea>. t-k == ~ e
                                                                                                                         2 sinh ak           -at
                                                -k                              a
         Finally             .                                    .     e transform
                        'combming cases, we have for the required mvers
                                                                                2 sinh ak                   a1
                                                                                ---e
                                                                                      a
                                                                 f(t)   =       ~                      (J
                                                                                                                                                                                      ,,,.
                                                                                                                                                                                             ....
                                                                                                                                                                             ,,,,
                                                                                2 sinh ak                   -a1                                                       ,,,,
        ~                                                                       ----e                                                                        ,,,,
        •~                                                                            a                                          ···········••'
                          I I I I I I I I   I
                                                .......................                • I   f I   I    I   I   I    I   f I I
                                                                                                                                                                9.3 PROPIRTilS Of FOURIER llAN
                                                                                                                                                                                   .           SF<llll$
                                        27T -a<:
                                                  h Ids for the given function f
                        Hence Parse val' s theorem o                          •••••••••• • ••••••••••••••••••••••••••••.•• , •, ,
                                                                                                 ·········                                                                                                             ' '"
 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·............ ved the frequency convolution theorem, we can multi
                                               In essenua         . 11 Yth e same way that we pro             tablish the following companion.   theorem.              .
                                      ply the integrals o! two transfonns to es                                                                          .
                                                                               . C                    t·on) The inverse of the product of two transforms 1s the convolu-
                                         TMEOREM 10                       (Time onvoIu 1
                         tion of their inverses; that is,
                                                           ~r'[F(w)G(w)]                         = f ""          f(A)g(t - A) dA                   = f(t) * g(t)
                                                                                                      -    OC>
                              This theorem is often useful for finding the inverses of transforms which can be resolvedinto
                         factors whose inverses we know. However, when the inverses of the individual factors arefunc-
                         tions which are identically zero for t < 0, the bilateral convolution appearing in the statement ci
                         Theorem 10 must be replaced by the unilateral convolution.
                              To see why this is so, we first note that if f and g are functions which are trivial fort< 0, ilicl
                         their bilateral convolution reduces to
                                                                                     f(t) * g(t)            =     r   0
                                                                                                                          f(A)g(t - A) dA
                                                                                                       r
                                                                                                                                                                    '
                                                                                 ~ - I [F(w)G(w))                         =         f(A)g(t - A)                        dA                                        ,/
                                                    ,,, ...........
                                                                                     .................                         0
                                                                                                                                                                                                ........ .
                                                                                                                                                                                                         ,,,• '
                                 ·················· ······ ······· ····· .... , .. ' ... .... .... ····· ... ··························""
                                                                                                '
                                 Find a particular integral of the equation
                                             th
                                                                    1
                                                                         y' + 3y' + 2y == f(t)
                                                                                                                         if
                                                                                                                                     f(•)    =    l~     \t\ < l
                                                                                                                                                         \t\ > \
                                    . In as isgiven
                                 tat1on,        problem, f <)(23),
                                                     by Eq.   tS theSec.
                                                                     pulse9.lfunction
                                                                               , is   we studie<i in detai \ in Sec 9. I. and ,is Founon•.<P?
                                                                                      f(t) == -
                                                                                                             2      f"" -sin w        cos wt dw
                                                                                                              7T     O         w
                                 Hence die given "luation can be wnnen                              tn the           fonn
                             (J)
                                 ne -
                                        u,
                             ·mi•nit-•--•
                             I
                                              r---~
                                      --......, r-uuu
                                                        i~!fy .
                                                        -
                                                                ~ d
                                                                d/ bldividuat
                                                                        of /(I)
                                                                                     111
                                                                                           ~
                                                                                               f ,uent:1~s
                                                                                                                     ,n "'
                                                                                                                          7T     O
 "",,_..
                         -ALS AIID
-oo < r :s - 7r
t,                 _,l ==    {~,n r                 - 1r :s r :s
                                                      1r s r <
                                                                     7T                                                (c) Prove Caroll
                                                                                                                        (d) Prove Corollary '\, Theorem 6
                   /l            0
                                                    -oo     < rs
                                                                     00
                                                                       -    1r
                                                                                                                   17. If F(w) i~ lhc
                                                                                                                       ff lJ'
                                                                                                                                                   ;y ~•
                                                                                                                                                oun er
                                                                                                                                                       ·1hcorem 6
                                                                                                                              .,. f(s) dt ) - r           tran~forrn
      i..l
                  JIil ==    {~qn
                              0
                                 rl
                                                    - 7r S I S
                                                      7r S f <oo
                                                                       7T                                          18. Show that P; - ·.(c,J)/iw
                                                                                                                        ?Iex, .i.e., Whenrsevat ~ thcor .
                                                                                                                                                                      (1f /rri, ih
                                                                                                                                                                                   r,,,, '~ .,
                                                                                                                                             f(I) :::      em ,~al~o l
                                                                                                                        If                            f,(t) + if',(I) rue\1/hcn/ ,
                          f clions an d Theorem 6 to find the inverse of                                                                                                   '          ff 1111     F,r             ' c '11-
          ;ir11al ra
 , l ti: r r transfom1
                                     F(cu) of Ex ample 2.                                                                                                                                                  ,t ,h,,,.., Ih11
                                                                I                                                                  ff [f(t)] ::: F(w
                founc                                     .
         11-t                        •       a     and w given by                                    ==                                        )     then     ?, -
     I L<t .,u,e ,denlllY
                          10
                                                                                    4a 4   +    w4                     Then apply Theo                           [fr,ll"' Fr
                                                                                                                    19 L
                                                                                                                      · ct P be a unit    rern  8 to  h
                                                                                                                                                     t e Proctuc      ·       ~,o,
                  ~ and Theorem 10 lo find
         -.-- - a)"][a" + (w + ai · I
                                                                                                                                        pulse function be        t/(rJ/ flJ"' 11
                                                                                                                                                          twee 11 _ 1         . rr
                                                       00
                                                            F(r)G(-r) dr. Hint: Suit-
                                                                                                                      20. Using the definitions of E .
                                                                                                                                                      l\erc1se 19, show that
                  a;y specialize Theorem 8.
            (b) [f(r)g(-1) dt
              ably specialize Theorem 8.
                                              = 21r    t:        F(r)G(r) dr. Hint: Suit-
                                                                                                                                                   ~[ nhr, ( )]
                                                                                                                                                       e     PI
                                                                                                                                                                               l
                                                                                                                                                                         "' - S(w - n.r)
                                                                                                                                                                               7i
                            I"'
                                                                                                                              transform of a single pulse defined betv.een - l a:.~ 1by
                         sin z sin (w - z) 1r sin w                                                                           a Fourier series in either complel\ exponenual er ral L- i·
         ILShow tha1           -----dz== - - -                                                                                onometric form.
                             -«          z          w-      z                       w
         11 UsmgTheorem 10, find the inverse of each of the follow-                                                     21. If J(t) is a pulse defined between - I and I b) c1L".:r ot
            ~ Fourier transforms.                                                                                           the equivalent series
                (a) - . I _
                   (a   +iw)2                        (b) - - ------;;-                                                            2,   (an cos n1rt        + bn sin n1rt)                    or
          OU11ng Theorem                                 (a+ iw) 3                                                               n=O
                        e·3..,               10, find the inverse o~ F(w)                                  =
                                                                                                                               use the results of faercise 20 to sho11 thJt {J l "•:
            ~              -Check your result by using a different                                                             1rF(n1r) + F(-n1r), (b) bn = i7if(n rrl - f t-n~,• ~~
           kltlonution of F(w).                                                                                                (c) Cn = 1rF(n1r), where f(w) is the Founer tr.1.,,,,rn
                FIQd the
                      inverse of each of the following transforms.                                                            the pulse.                     f       - , ~ ,~u b• b
                                                                                                                                         .       f     f the unctmn 11 1. 1
              la)~2iw                                 8 + 4·                                                              22. Is the Founer trans onn o . ·o rne trJn,1,1n11 ~, LI!<
                 (I+ , ~                    (b)             !W                                                                  Table 9.2, the same us the Founer ~ '
                            2
            l1a1 If 'W)_( + iw)2                 (1 + iw)2(3 + iw)2                                                             following function? Why?
                   /(I) IS tde t' 11
                 lo           n •ca) Y
                    •~)and iff'(       zero for 1 < O and continuous on                                                                                                                               ll
                                  I ·                                                                                                                                    t' "'
                                                                                                                                                              (1) =                         I .....
                 lhJ, '6how th l tsThat least piecewise continuous on
                                                                                                                                                            g
                                                                                                                                                                                   or lhl' t1111l~           II JI(
                                                                                                                                                                                                                       tr.Ill
                        tt                                                                      ~ [f"
                                                                                                                                                        f(l) = f~lll (lll1f                     1,,/                      ,
                lilt         0~1;P'°Priate conditions, what                                is             (I) ]1                                                     l       , 1.1lu~ iii/,
                                                                                                                                                                                                               l~c' ll"
                                                                                                                                                                                                                                ~•
                  II ~t ,,.. itry I , Theorem 6.                                                                                  nnd show that
                                                                                                                                                           l l11rg1'1 lIl l                 ,J                    J
                        '-Ul"Ol111n, 2 ,                                                                                                                  l ,~    I . l'rl'l}llt'lld(' ii.\:
                                             -, , fhcorern 6.                                                                     COllCC llll'lltl'\
                                                                                                                                                       llfOlltld t \(
                                                                                                                                                                                                              l   l '\\
                                                                                                                                                                                            II u1.il J
                                     ----                                                                                                                            J), 11(,111(,'
                                     +1.
                                     tin . .- - - - - - -                                                                       )/11 11111/ 111   ft11/ t-/c•(l(II
                                         C P~tcuJar
                                              n        problem~. 'f'a/1kv oj r/r1• 1"111wr/011 (.11,1 11
                                          llnb ctge, Ma&s. , will be of co11 \idl·nthll' lu:lp .
       576                                                                                                                 I          Hint: What is the antideriv .
                                                                                                                ~                                                                  atrveor lhe
                                                                             of 1hiS                        (c ) (iw       +   I)
                                                                 ,11corcrn~
           EXfltCISf5                         I 1 11sc 1hc             . fu11clions                                rransform?
                                   if Ex11111p c . ,       is of 1hc
           I G,.,c11 rhc rc~11lr < Fouiicr 1r1111sfon1                                                               e '"'Hint: Factor the denom 1  ·nator
            •            10 find rhc                                                                       (d) ~                      .       .            .                                                              and
              ,cc11nn . : 9. 10.                                     .     find rhc
              ,h()\\ 11 111 J ,g.                        I , ~cell Oil,                                           F( w) == F,(w) + tF;(w) 1s the Fourieq .
                                                     of 111s •                                          5 (a) I f                  . h . . 'd .             ransfo
                                     id 1hcorc111.~               sfonns.                                ·      f ction/(t) wh1c 1s I ent1cal ly zero bc,orc r     rrn 0r
      ll"np rhc 1ran~fpr111~ n,, lio" ing Fouiicr 1ra11.                                                      a un               .                                  ,                                                    use pa
                    f cnd1 of rhc o                        ,,,,,                                              show that F,(w) rs the trans:orm o_f onc-ha1r,/ '0,                                                  7
          •   . •
                                                         !:_.-                                                                                                                                                      • [he fo
      11 11r1,cn                                                                                                    ,sion of /(I) and that 1F;(w) 1s the t       Ceve
                          1,        :""                 (b)    -;;T2 + itu)                                   ex tcl                        .              ransfo 0
                                                                                                                                                                  rm of
       2.   (M)   .1( I ➔                 1/u)                                      _,,.,                     one-half the odd extension of /(1).                                                                  s. use th
                                                                               ('
                                          ,,,..                                                            (b) Whal are the functions   represented, rcspc .
                    I -            t'                  (d)    27r( I + iiu)( 2 + itv)                                           .     .                   ctrvcJy b
                                                                                                               the real and the imaginary terms in th c lransi, y
            (C)       2. +              ll•'
                                                                    -   \u,J
                                                                                                                   J /(a   +   iw)?                             0                         rin                           [a2   +(
                                                                e
                  r   f:'-tw1l
                                                                                                                                               of the f .                                                         the jnve
            (e) ~
                                                       (f) J+Ziw
                                                                                                        6. (a) Show that the Fourier transform         unc1, 00
                                                                             - 2fo>
                                                                                                                                                                                                               9, Show ~h
                                                                    ---
                                                                                                                                                                                                                   (•IL I
                                                                         e
               w  i ~in                                (h)    - wi + 4iw + 3                                                                                -ex;,< I :S 0
            (g)~
                                                                               iw
                                                                                                                                                                                                                         1:-~
                                                                                                                                                              Os1 s;          77
      3· (a) (iw
                                           I
                                                       (b) (iw          + I )(iw + 2)                                                                         7TSt< oo
                          + I )(iw + 2)                                                                                                                                                                            (b)
                                                               e-iw                                                                                                                                            Hint: Inte
        (c) iw        +
                               I
                                               i
                                                       (d)    iw+2                                                                                      I   + e -i1rw                                         use Theor
                                   I -
                                                                                                               is                      F(w)   =                                                           10. If F(w) an
                    e-2,w                                                                                                                         21r       I - w2
                                                                                                                                                                                                                of f(t) andl
        (e) (iw
              sin (w -
     4. ( a ) - - - -
                      + 3)2
                    w-2
                                           2)
                                                       (b)--
                                                              sin (w/2)
                                                                 w
                                                                                                          (b) Using the result of Part a, find the Fourier lransfoa
                                                                                                               of each of the following functions
                                                                                                                                                                                                               (a) 1:   f(tl)
                                                                                                                                                                                                                    ably sp
FIGUIE 9.10
                                                                                                                                                                                                             (b)   1:
                                                                                                                                                                                                                   ably spe
                                                                                                                                                                                                                              J(t)
                                                                                                                                                                                         ll U.1 lI                  .   •ho_,~ j
                                                                                                                                                                                                (11)       llder    th          .
                                                                 -2                                                                                              )
                                                                                                                                                                                                Cb) ~'ve Ce app
                                                                                     -I                                                                          ·1                                    ·rove         OrolJ
                                                                                                           2   I                                  0                                                                C:orolJ