STM 32 WL 33 CB
STM 32 WL 33 CB
Datasheet
Features
• Includes ST state-of-the-art patented technology
• Ultra-low power sub-1GHz wireless system-on-chip
• Programmable MCU
VFQFPN48 (6 x 6 mm) – Core: Arm® Cortex®-M0+ 32-bit, running up to 64 MHz
– Program memory: 64-Kbyte / 128-Kbyte / 256-Kbyte flash memory
– Data memory: 16-Kbyte / 32-Kbyte SRAM (full retention)
– Additional storage: 1-Kbyte OTP (user data)
• Radio
VFQFPN32 (5 x 5 mm) – Frequency bands: 159-185 MHz, 413-479 MHz, 826-958 MHz
– Air data rate from 0.1 to 600 kbit/s
– Programmable TX power up to +20dBm
– RX sensitivity @ 1% BER:
◦ -132 dBm @300 bit/s 433 MHz OOK
◦ -128 dBm @300 bit/s 868 MHz 2(G)FSK
Product summary
◦ -112 dBm @38.4 bit/s 868 MHz 2(G)FSK
Reference Part number – Modulation schemes:
STM32WL33C8 ◦ 2(G)FSK, 2(G)MSK, 4(G)FSK
STM32WL33CB ◦ OOK, ASK
STM32WL33CC ◦ D-BPSK
STM32WL33xx ◦ DSSS (direct sequence spread spectrum)
STM32WL33K8
◦ I/Q channels data access
STM32WL33KB
◦ Compatible with proprietary and standardized wireless protocols
STM32WL33KC (W-MBUS, Sigfox, Mioty, KNX-RF, IEEE 802.15.4g, others)
– Suitable for worldwide certifications:
◦ Europe: ETSI EN 300 220, category 1 compliant, ETSI EN 303
131
◦ US: FCC part 15 and part 90
◦ Japan: ARIB STD T67, T108
– Fully-configurable hardware sequencer for autonomous radio operations
(Sniff mode, Frequency hopping, Low Duty Cycle mode, Listen before
talk)
• Wakeup radio receiver
– Low power autonomous wakeup receiver (LPAWUR), featuring:
◦ OOK data receiver channel
◦ Sensitivity: -50 dBm
◦ Current consumption: 4 µA in always-on autonomous mode
Applications
• Asset tracking
• Wireless sensors
• Industrial monitoring and control
• Home energy management systems
• Smart home and alarm systems
• Building automation
• Heat cost allocator
• Remote metering
1 Introduction
This document provides the ordering information and mechanical device characteristics of the STM32WL33xx
microcontrollers, based on Arm® core.
This document must be read in conjunction with the STM32WL33xx reference manual (RM0511).
For information on the device errata with respect to the datasheet and reference manual, refer to the
STM32WL33xx errata sheet (ES0612).
For information on the Arm® Cortex®-M0+ core, refer to the Cortex®-M0+ technical reference manual, available
from the www.arm.com website.
Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
1.1 Glossary
Acronym Description
2 Description
The STM32WL33xx is a high performance ultra-low power wireless application processor, intended for RF
wireless applications in the sub-1 GHz band. It is designed to operate in both the license-free ISM and SRD
frequency bands such as 433, 868, and 915 MHz.
It adopts a single-core architecture embedding an Arm® 32-bit Cortex®-M0+ CPU that can operate up to 64 MHz.
It integrates high-speed and flexible memory types: up to 256 Kbyte flash memory, and up to 32 Kbyte RAM, one-
time programmable (OTP) memory area of 1 Kbyte.
The STM32WL33xx embeds a wide set of peripherals, including a 20-pin (16 segments + 4 commons) LCD
driver, 12-bit, 8 channel ADC, analog comparator, DAC, LC sensor controller, RTC, IWDG, general purpose
timers, AES-128, RNG, CRC, communication interfaces such as USART, SPI, and I2C. Moreover, the security
features enable secure boot with USART/SWD block (write protection) and sensitive information storage in flash
(read-out protection).
Direct data transfer between memory and peripherals and from memory-to-memory is supported by seven DMA
channels with fully-flexible channel mapping by the DMAMUX peripheral.
It can be configured to support standalone or network processor applications. In the first configuration, the
STM32WL33xx operates as single device in the application for managing both the application code and
proprietary sub-1 GHz protocol stacks.
It operates in the -40 to +105 °C temperature range from a 1.7 V to 3.6 V power supply. A comprehensive set of
power-saving modes enables the design of low-power applications.
The integrated highly efficient SMPS step-down converter together with the state transition speed between low-
power and active states minimize in every condition the average current consumption enabling the
STM32WL33xx to be the wireless application processor most suited for battery-operated applications.
The STM32WL33xx comes in different package versions supporting up to 32 I/Os for the VFQFPN48 package
and 17 I/Os for the VFQFPN32 package.
32 kHz XO
48 MHz XO
32 kHz RC
64 MHz RC RF_SUBG
(ana)
MR_SUBG
RCC (dig) wakeup
SW / JTAG MPU
NVIC DMA MUX
GPIOA
CM0+ DMA BM 4S/1M LPAWUR
8ch wakeup LPAWUR
GPIOB AHB Up
Radio (ana)
AHB0
CRC (dig)
BUSMATRIX 3S/7M
RNG
AHB
AES Flash SRAM0 SRAM1 down
interface CTRL CTRL
PWRCTRL SRAM0 SRAM1 APB
Flash bridge
(16 Kbytes) (16 Kbytes)
(256 Kbytes
/8 Kbytes)
POR/
BOR APB APB
APB0 APB1
PVD bridge bridge
COMPCTRL
VDD CLKDETR
DBGMCU
LCD 16x4
DACCTRL
TIMER16
ADCITF
LCSCTRL
LPUART
SYSCFG
USART
TIMER2
SP13
I2C2
I2C1
SP11
IWDG
RTC
LDO
/SMPS
1 x DAC
COMP
ADC
Scaler
VDD12o VDD12I
analog
Temp.
1x
LCD
sensor
VDD12o_ram1
3 Functional overview
3.1 Architecture
The devices embed a sub-GHz RF subsystem that interfaces with a generic microcontroller subsystem using an
Arm Cortex-M0+ core. The main system consists of a 32-bit multilayer AHB bus-matrix interconnect:
• Three masters:
– CPU (Cortex® -M0+) core S-bus
– DMA1
– Sub-1 GHz radio subsystem
• Seven slaves:
– Internal flash memory on CPU (Cortex®-M0+) S bus
– Internal SRAM0 (16 Kbytes)
– Internal SRAM1 (16 Kbytes)
– APB0 peripherals (through an AHB to APB bridge)
– APB1 peripherals (through an AHB to APB bridge)
– AHB0 peripherals
– AHBRF including AHB to APB bridge and Radio peripherals (connected to APB2)
The bus matrix provides access from a master to a slave, enabling concurrent access and efficient operation even
when several high-speed peripherals work simultaneously. This architecture is shown in Figure 2.
ARM DMA
Radio system
Cortex-M0+ 7ch
seq
AHB UP Conv
S0 S1 S2 S3 S4 S5
Flash
M0
Flash
Controller
M1
SRAM0
M2
SRAM1
APB0
M3
AHB2APB
peripherals
APB1
M4
AHB2APB
peripherals
AHB0
M5
peripherals
AHB APB2
M6
AHB2APB
DOWN conv LPAWUR
DT58200.V1
BusMatrix 6x7
BusMatrix 6x7
The system consists of a Cortex®-M0+ “Radio protocol and application” processor with its radio sub-system.
There is a single flash memory to be used by the CPU for both sub-1 GHz protocols and application
management. The peripherals are located on the different system buses (AHB, APB0, APB1, APB2 for the radio
system). There are 2 SRAM banks, a SRAM0 always power supplied and SRAM1 that can be programmed to be
always on or switchable.
3.3 Memories
3.4 RF subsystem
The STM32WL33xx embeds an ultra-low-power radio supporting Sub-1GHz operation.
It integrates a high performance ultra-low power Sub-1GHz transceiver supporting different modulation schemes:
2(G)FSK, 4(G)FSK, OOK and ASK and air data rate programmable from 0.1 to 300 kbit/s for 2-GFSK and up to
600 kbit/s for 4-GFSK.
Moreover, the device integrates a Wake-Up radio system based on OOK receiver (LPAWUR).
The STM32WL33xx RF output power can be programmed to deliver up to +20 dBm, in TX+TXHP mode, enabling
long communication ranges. Up to +16 dBm in TXHP mode or up to +10 dBm in TX modes, exploiting the
extremely optimized architecture for ultra-low-current consumption and battery-operated system.
The STM32WL33xx receiver offers best in class sensitivity performance together with extremely low current
consumption. Moreover, it is compliant with ETSI CAT1 adjacent channel selectivity specification and very high
blocker rejection, resulting in receiver robustness and in the capability to demodulate packets even in the
presence of high interferer signals in very crowed frequency channel.
The IQ data access in receiver mode, coupled with polar mode control of the transmitter, enables the
implementation of custom modulation schemes using the embedded microcontroller or using an external DSP.
3.4.1 RF front-end
The RF front-end is based on a direct modulation of the carrier in TX and used a low IF architecture in RX mode.
In transmit mode, three different topologies, with dedicated BOM configuration on the board, address operations
in different output power range according to the selection of TX and TX_HP.
Moreover, the output power is user selectable through the dedicated programmable register. A linearized,
smoothed analog control offers a clean power ramp-up.
In receive mode, the automatic gain control (AGC) can reduce the chain gain at both RF and IF locations, for
optimized interferer rejections. Thanks to the use of complex filtering and highly accurate I/Q architecture, high
sensitivity and excellent linearity can be achieved.
SUBG_RX_CLK SUBG_RX_DATA
SoC
MR_SUBG
Global
(digital RF IP) registers
SoC APB
interface
RFSUBG Radio FSM
(analog RF IP) Radio
RRM
registers
Receive
RX RX analog chain In RX
Data link layer
SD
TX PA Freq. synth
PA interface
Radio control
Transmit
Power interrupts
control
Time
management
wakeup request
Wakeup/Sleep
management sleep allowance
DT58203
SUBG_TX_CLK SUBG_TX_DATA
WakeUp radio IP
Retained APB
Registers AHB2APB
Management
Analog Front-End
Switchable
Registers
interrupt IRQ
Wake-up event
Sleep allowance
DT58203.V1
The Receiver uses the Manchester OOK modulation only (G.E.Thomas encoding).
The default data rate is 1 kbit/s for the raw data which gives 2 kbit/s after Manchester encoding.
The frame format is a specific frame as described below, with few configurable bit fields in order to expand the
use of the WakeUp Radio IP.
The specific frame is composed of:
• a bit sync of 40 bits defined at ‘0’
• a frame sync of 8 bits corresponding to the pattern 0x99
• a payload of 56 bits
• a CRC defined on 16 bits, and calculated on the payload only
Manchester encoding
CRC calculation
Frame
bit sync Payload CRC
Sync
16 bits
40 bits 8 bits 56 bits
Init : 0x0000
0x0000000000 0x99
DT58204.V1
Polynom: 0x8005
(x16 + x15 + x2 + 1)
The analog section of the receiver is equipped with an automatic gain control system (AGC) which senses the
input signal level and acts to avoid saturation.
0 1.2 V 1.95 V
1 1.2 V 1.95 V
2 1.2 V 1.95 V
3 1.3 V 1.95 V
4 1.4 V 2.0 V
5 1.5 V 2.0 V
6 1.6 V 2.15 V
7 1.7 V 2.2 V
8 1.8 V 2.3 V
9 1.9 V 2.45 V
10 2.0 V 2.6 V
11 2.1 V 2.7 V
12 2.2 V 2.8 V
13 2.3 V 2.8 V
14 2.4 V 2.9 V
15 2.4 V 2.9 V
It is internally clocked at 4 MHz or 8 MHz. It can be clocked at a frequency in-between 4 MHz and 8 MHz by
means of the KRM feature. In this case the SMPS can be clocked at System Clock divided by 8 to 16 by unitary
steps. This feature is useful to avoid that the channel to be received is at a frequency that is an integer multiple of
the SMPS clock.
The device can operate without the internal SMPS either by using a dedicated hardware setting, or by using the
bypass-on-the-fly (BOF) feature. The bypass-on-the-fly permits internal connection of the SMPS output to the
battery via a current-limited switch (Static mode), or bypass of the SMPS by the use of an internal regulator
(dynamic). In both modes the SMPS is off while the bypass-on-the-fly is operating, and a programmable current
limitation is provided. The static mode connects the SMPS output to the battery after the first start-up of the
STM32WL33xx, and the connection is maintained until a reset occurs. In this case, the transmission is limited to
+14dBm. The dynamic mode bypasses the SMPS with a regulator. For instance, this can be done dynamically to
use the SMPS during transmission and to bypass the SMPS via a regulator during reception.
The SMPS has the following possible configurations:
• SMPS_ON
– the VFBSD pin of the SMPS outputs a regulated voltage (from 1.2V to 2.4V)
– the SMPS needs a clock.
• No SMPS
– VFBSD pin must be connected or to an external supply or to VDD
– VLXSD pin must be floating
– the SMPS does not need a clock
SMPS
DT58206
PWRCo, RCCo Peripheral RCCi
• The radio block is able to generate two events to wake up the system through its embedded wake-up timer
running on low speed clock:
– SUBG RFIP wakeup time is reached
• the LPAWUR RFIP is able to generate a wakeup event
• the LCD is able to generate a wakeup event
• the COMP is able to generate a wakeup event (with polarity selection, like I/Os)
• the RTC is able to generate a wakeup event
• the LC sensor controller is able to generate a wakeup event
• the LPUART is able to generate a wakeup event
• the IWDG is able to generate a reset event
• All I/Os are able to wake up the system.
At wakeup, the hardware resources located in the VDD12i power domain are reset, the CPU reboots. The reason
for wakeup is visible in a PWRC register.
LSI RC0
32 kHz
CLKSLOWSEL
LCOSEL
CLK_RTC
1 10
CK_WDG
LCO CK_MR_SUBGHz_WKUP
0 01 CLK_LPAWUR_WKUP
CLK_LCD
CLK_ROOT_DIV / 512 11 CLK_SCI_WKUP
OSC32k_OUT CLK_TIM2
LSE OSC CLKTIM16
32 kHz
OSC32k_IN SYSCLKDIV
RC64MPLL HSESEL
HSESEL
HSI 64 MHz
+ PLL x 4/3 SYSCLKDIV
/2 00
01 CLK_SPI3 / I2S
CLKANA_ADC CLK_ROOT_DIV CLK_SYS 1x
CLK_SMPS
CLK_SYS SPI3I2CCLKSEL
The STM32WL33xx comes in two package versions: VQFPN32 offering 17 GPIOs, and VFQFPN48 offering 32
GPIOs.
VDDSD
VSSSD
VFBSD
VLXSD
VCAP
PB2
PB1
PB0
32
31
30
29
28
27
26
25
PA2 1 24 NRST
PA3 2 23 PB7
VDD_1 3 22 PA1
PA0 4 21 OSCIN
PA11 5
VFQFPN32 20 OSCOUT
PA10 6 19 VDDRF
PA9 7 18 TX
PA8 8 17 TX_HP
10
12
13
14
15
16
11
9
PB6
PB12
PB13
PB14
PB15
RX
EXTGND
LPAWUR
DT58209V1
Exposed ground pad
VLXSD
VCAP
PA15
PA14
PA13
PA12
PB2
PB1
PB0
48
47
46
45
44
43
42
41
40
39
38
37
PA2 1 36 NRST
PA3 2 35 PB8
VDD_1 3 34 PB9
PB3 4 33 PB10
PB4 5 32 PB11
PB5 6 31 PB7
PA0 7
VFQFPN48 30 PA1
PA4 8 29 OSCIN
PA11 9 28 OSCOUT
PA10 10 27 VDDRF
PA9 11 26 TX
PA8 12 25 TX_HP
13
14
15
16
17
18
19
20
21
22
23
24
PB6
PB12
PB13
PB14
PB15
VDD2
RX
EXTGND
PA5
PA6
PA7
LPAWUR
Note: All PAx and PBx type pins can wake up the circuit.
Pin number
Pin Name (function
VFQFPN VFQFPN Pin type Alternate functions Additional functions
after reset)
32 48
SWDIO, USART1_CK,
1 1 PA2 I/O TIM16_CH1, I2S3_MCK, ADC_VINM2
TIM2_CH1, LCD_SEG1
SWCLK, USART1_RTS_DE,
TIM16_CH1N, SPI3_SCK/
2 2 PA3 I/O ADC_VINP2
I2S3_CK, TIM2_CH2,
LCD_SEG2
3 3 VDD_1 S - 1.7 to 3.6 V battery voltage input
USART1_CTS, LPUART1_TX,
- 4 PB3 I/O SPI1_MOSI, TIM2_CH4, ADC_VINP0, COMP1_INN2
LCD_SEG8
LPUART1_TX, SPI3_MISO,
- 5 PB4 I/O ADC_VINM3, VCMBUFF
LCD_SEG13/LCD_COM5
LPUART1_RX, SPI3_NSS/
- 6 PB5 I/O I2S3_WS, LCD_SEG14/ ADC_VINP3
LCD_COM6
I2C1_SCL, USART_CTS,
4 7 PA0 I/O TIM2_CH3, LCD_SEG12/ -
LCD_COM4
LCO, LPUART1_TX,
- 8 PA4 I/O -
COMP1_OUT, TIM2_CH1
MCO, RX_SEQUENCE,
5 9 PA11 I/O SPI3_MOSI/I2S3_SD, -
SUBG_TX_CLOCK, LCD_SEG5
LPUART1_CTS,
6 10 PA10 I/O TX_SEQUENCE, I2S3_MCK, LCO
SUBG_TX_DATA, LCD_SEG4
USART1_TX, RTC_OUT,
7 11 PA9 I/O SPI3_NSS/I2S3_WS, -
TIM2_CH4, LCD_SEG3
RTC_OUT/RTC_TAMP1/
RTC_TS, USART1_RX,
8 12 PA8 I/O -
RX_SEQUENCE, SPI3_MISO,
TIM2_CH3, LCD_COM0
I2C1_SCL, LPUART1_TX,
COMP1_OUT, SPI3_SCK/
9 13 PB6 I/O -
I2S3_CK, TIM2_CH3,
LCD_SEG15/LCD_COM7
MCO, LPUART1_RX,
- 14 PA5 I/O -
TIM2_CH2, LCD_SEG9
I2C2_SCL, USART1_CTS,
- 15 PA6 I/O -
TIM2_CH1
I2C2_SDA, LPUART1_RTS_DE,
- 16 PA7 I/O -
TIM2_CH2
USART1_RTS_DE,
10 17 PB12 I/O LPUART1_CTS, LCO, SXTALO
TIM2_CH3
11 18 PB13 I/O I2C2_SMBA, TIM2_CH4 SXTALI
I2C1_SMBA, USART1_RX,
12 19 PB14 I/O TX_SEQUENCE, MCO, PVD_VIN
TIM2_ETR, LCD_COM3
Pin number
Pin Name (function
VFQFPN VFQFPN Pin type Alternate functions Additional functions
after reset)
32 48
USART1_TX, COMP1_OUT,
13 20 PB15 I/O -
LCD_VLCD
- 21 VDD2 S - 1.7 to 3.6 V battery voltage input
14 22 RX LPAWUR I/RF - RF RX port
15 23 RX I/RF - RF RX port
16 24 EXTGND S - -
17 25 TX_HP O/RF - RF TX port
18 26 TX O/RF - RF TX port
1.7 to 3.6 V battery voltage
19 27 VDDRF S -
input
20 28 OSCOUT I/O - 48 MHz crystal
21 29 OSCIN I/O - 48 MHz crystal
I2C1_SDA, USART1_TX,
22 30 PA1 I/O TIM16_BRK, TIM2_CH4, -
LCD_SEG0
I2C1_SDA, LPUART1_RX,
RF_ACTIVITY, SPI3_MOSI/
23 31 PB7 I/O -
I2S3_SD, TIM2_ETR,
LCD_COM2
I2C1_SCL, USART1_RTS_DE,
- 32 PB11 I/O LC_ACTIVITY, SPI1_SCK, -
TIM2_CH1
I2C1_SDA, SPI1_NSS,
- 33 PB10 I/O -
TIM2_CH2
USART1_TX, LPUART1_CTS,
- 34 PB9 I/O -
SPI1_MOSI
USART1_CK, LPUART_RX,
- 35 PB8 I/O -
SPI1_MISO, TIM2_CH4
24 36 NRST RSTS - Reset pin
1.7 to 3.6 V battery voltage input
25 37 VDDSD S -
SMPS input
26 38 VLXSD S - SMPS LX pin
27 39 VSSSD S - SMPS Ground
28 40 VFBSD S - SMPS output
29 41 VCAP S - 1.2 V digital core
I2C1_SMBA, SWDIO,
- 42 PA12 I/O -
SPI1_NSS, TIM2_CH1
I2C2_SCL, SWCLK, SPI1_SCK,
- 43 PA13 I/O COMP1_INN0, DACOUT_GPIO
TIM2_ETR, LCD_SEG10
I2C2_SDA, SPI1_MISO,
- 44 PA14 I/O COMP1_INP, LCB
LCD_SEG11
I2C2_SMBA, USART1_RX,
- 45 PA15 I/O -
SPI1_MOSI
Pin number
Pin Name (function
VFQFPN VFQFPN Pin type Alternate functions Additional functions
after reset)
32 48
USART1_RX,
LPUART1_RTS_DE,
30 46 PB0 I/O TIM16_CH1, SPI1_NSS, COMP1_INN1, ADC_VINM1
ANTENNA_SWITCH,
LCD_COM1
USART1_CK, SWDIO,
31 47 PB1 I/O TIM16_CH1N, SPI1_SCK, COMP1_INP, ADC_VINP1, LCA
SUBG_RX_DATA, LCD_SEG6
USART1_RTS_DE, SWCLK,
32 48 PB2 I/O TIM16_BRK, SPI1_MISO, COMP1_INP, ADC_VINM0, LCT
SUBG_RX_CLK, LCD_SEG7
Exposed Exposed
GND S - Ground
pad pad
I2C1/I2C2/ SYS_AF/
Port SYS_AF/ SYS_AF/ SYS_AF/ SYS_AF/ SYS_AF/
SYS_AF/RTC/ USART/ Single-wire
TIM2/COMP SPI1/SPI3 TIM2 LCD
USART debug
LPUART
LCD_SEG12
PA0 I2C1_SCL USART1_CTS - - TIM2_CH3 -
/LCD_COM4
PA1 I2C1_SDA USART1_TX TIM16_BRK - TIM2_CH4 - LCD_SEG0
PA2 SWDIO USART1_CK TIM16_CH1 I2S3_MCK TIM2_CH1 SWDIO LCD_SEG1
USART1_RTS_ SPI3_SCK/
PA3 SWCLK TIM16_CH1N TIM2_CH2 SWCLK LCD_SEG2
DE I2S3_CK
PA4 LCO LPUART1_TX COMP1_OUT - TIM2_CH1 - -
PA5 MCO LPUART1_RX - - TIM2_CH2 - LCD_SEG9
PA6 I2C2_SCL USART1_CTS - - TIM2_CH1 - -
LPUART1_RTS
PA7 I2C2_SDA - - TIM2_CH2 - -
_DE
RTC_OUT/
Port A RX_SEQUEN
PA8 RTC_TAMP1/ USART1_RX SPI3_MISO TIM2_CH3 - LCD_COM0
CE
RTC_TS
SPI3_NSS/
PA9 - USART1_TX RTC_OUT TIM2_CH4 - LCD_SEG3
I2S3_WS
TX_SEQUEN SUBG_TX_
PA10 - LPUART1_CTS I2S3_MCK - LCD_SEG4
CE DATA
I2C1/I2C2/ SYS_AF/
Port SYS_AF/ SYS_AF/ SYS_AF/
SYS_AF/RTC/ USART/ SYS_AF/ LCD
TIM16/COMP SPI1/SPI3 TIM2
USART LPUART
LPUART1_RTS ANTENNA_
PB0 USART1_RX TIM16_CH1 SPI1_NSS - LCD_COM1
_DE SWITCH
SUBG_RX_
PB1 USART1_CK SWDIO TIM16_CH1N SPI1_SCK - LCD_SEG6
DATA
USART1_RTS_ SUBG_RX_
PB2 SWCLK TIM16_BRK SPI1_MISO - LCD_SEG7
DE CLOCK
PB3 USART1_CTS LPUART1_TX - SPI1_MOSI TIM2_CH4 - LCD_SEG8
LCD_SEG1
PB4 - LPUART1_TX - SPI3_MISO - - 3/
LCD_COM5
SPI3_NSS/ LCD_SEG1
PB5 - LPUART1_RX - - - 4/
I2S3_WS LCD_COM6
SPI3_SCK/ LCD_SEG1
PB6 I2C1_SCL LPUART1_TX COMP1_OUT TIM2_CH3 - 5/
I2S3_CK LCD_COM7
Port B
RF_ACTIVIT SPI3_MOSI/
PB7 I2C1_SDA LPUART1_RX TIM2_ETR - LCD_COM2
Y I2S3_SD
PB8 USART1_CK LPUART1_RX - SPI1_MISO TIM2_CH4 - -
PB9 USART1_TX LPUART1_CTS - SPI1_MOSI - - -
PB10 I2C1_SDA - - SPI1_NSS TIM2_CH2 - -
USART1_RTS_ LC_ACTIVIT
PB11 I2C1_SCL SPI1_SCK TIM2_CH1 - -
DE Y
USART1_RTS_
PB12 LPUART1_CTS LCO - TIM2_CH3 - -
DE
PB13 I2C2_SMBA - - - TIM2_CH4 - -
TX_SEQUEN
PB14 I2C1_SMBA USART1_RX MCO TIM2_ETR - LCD_COM3
CE
PB15 - USART1_TX COMP1_OUT - - - LCD_VLCD
5 Application circuits
VDD
C56
GND
VDD
GND
C61 C2
48
47
46
45
44
43
42
41
40
39
38
37
GND
PB1
VCAP
PB2
PB0
PA15
PA13
VFBSD
VSSSD
VLXSD
VDDSD
PA14
PA12
36
NRST
35
VDD PB8
1 34
PA2 PB9
2 33
PA3 PB10 X1
3 32
VDD_1 PB11 48MHz
4 31
PB3 PB7
C12 5
6
7
PB4
PB5 STM32WL33 PA1
OSCIN
30
29
28
VDD
PA0 OSCOUT GND
8 27
PB14/ ATB1/PVD_VIN
PB12 / ATB3 / SXTAL0
GND 9 26
PA11 TX
10 25 C13
PA10 TX_HP L3 C50
11 C49
PA9
12
PA8
PB15/ ATB0
EXP_PAD
LPAWUR
EXTGND
GND GND
VDD_2
GND
TX
C6
PB6
PA5
PA6
PA7
RX
Open
L4 L5
21
13
23
14
15
16
17
18
19
20
22
24
49
L6
TX_HP
C9 C10 C11 C66
Short
R48
GND
GND
DT58212
L2
C4 C56
GND L1
VDD
GND
C61 C2 C1
48
47
46
45
44
43
42
41
40
39
38
37
GND GND
PB1
VCAP
PB2
PB0
PA15
PA13
VFBSD
VSSSD
VLXSD
VDDSD
PA14
PA12
36
NRST
35
VDD PB8
1 34
PA2 PB9
2 33
PA3 PB10 X1
3 32
VDD_1 PB11 48MHz
4 31
PB3 PB7
C12 5 30
6
7
PB4
PB5
PA0
STM32WL33 PA1
OSCIN
OSCOUT
29
28
GND
8 27
PB14/ ATB1/PVD_VIN
PB12 / ATB3 / SXTAL0
GND 9 26
PA11 TX
10 25 C13
PA10 TX_HP L3 C50
11 C49
PA9
12
PA8
PB15/ ATB0
EXP_PAD
LPAWUR
EXTGND
GND GND
VDD_2
GND
TX
C6
PB6
PA5
PA6
PA7
RX
Open
L4 L5
21
13
23
14
15
16
17
18
19
20
22
24
49
L6
C67 R75 TX_HP
C9 C10 C11 C66
Short
R48
R76 GND
GND X3
GND GND GND
C37 C68 R74
GND L7 C54 J1
GND L14
0R
VDD C62 C63
R49 C15
NM NM
C14
VDD C52
GND
DT58213
Matching network for LPAWUR path
Components Description
6 Electrical characteristics
ΣIVDD Total current into sum of all VDD power lines (source) 130
ΣIVGND Total current out of sum of all ground lines (sink) 130
IVDD(PIN) Maximum current into each VDD power pin (source) 100
where:
• TA max. is the maximum ambient temperature in °C
• ΘJA is the package junction-to-ambient thermal resistance, in °C/W
• PD max. is the sum of PINT max. and PI/O max. (PD max. = PINT max. + PI/O max.)
• PINT max. is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power
PI/O max represents the maximum power dissipation on output pins:
• PI/O max. = Σ (VOL × IOL) + Σ ((VDD – VOH) × IOH)
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the applications.
Typ.
Symbol Parameter Test condition Unit
VDD = 3.3 V
Shutdown - 14 nA
ICORE
Current under Reset condition - 955 µA
Typ.
Symbol Parameter Test condition Unit
VDD = 3.3 V
1. The current consumption in Deepstop mode is measured considering that the entire SRAM is retained.
2. LCD division ratio 256, all pixels active, no LCD connected.
3. LCD 1/3 bias, division ratio 64, all pixels active, no LCD connected.
Table 14. Current consumption in Run and WFI mode with SMPS ON (SMPS frequency 4 MHz, SMPS Vout
=1.4 V)
Typ.
Symbol Parameter Test condition Unit
VDD = 3.3 V
Table 15. Current consumption in Run and WFI mode with SMPS bypassed
Typ.
Symbol Parameter Test condition Unit
VDD = 3.3 V
Table 16. Peripheral current consumption at VDD=3.3V, T=25°C System clock 32 MHz, SMPS ON
GPIOA 1
GPIOB 1
DMA 38
AES 32
RNG 103
CRC 6
SYSCFG 34
RTC 18
WDG 11
USART 77
LPUART 56
SPI1 29
SPI3 38
I2S3 45 µA
I2C1 37
I2C2 37
TIM2 152
TIM16 94
LCD 11
COMP 1
PVD 0
MRSUBG 68
LPAWUR 4
DBGMCU 1
SYSTICK 10
DAC 375
ADC 28
Table 18. Current consumption in reception, fc = 868 MHz (SMPS clock frequency = 4.27 MHz)
Measurements TX @ CW 10 dBm
12.5 mA
TX pin connected, TX Mode
Measurements TX @ CW 14 dBm
25 mA
Supply current TXHP pin connected, TXHP mode
Measurements TX @ CW 16 dBm
TXHP pin connected, TXHP mode PA_DEGEN_ON 31 mA
VSMPS = 1.6 V
Measurements TX @ CW 10 dBm
TX pin connected, TX Mode 10 mA
PA_LEVEL7 = 78
Measurements TX @ CW 14 dBm
22 mA
TXHP pin connected, TXHP mode
Supply current
Measurements TX @ CW 16 dBm
30.5 mA
TXHP pin connected, TXHP mode, VSMPS = 1.5 V, PA_DEGEN_ON
Measurements TX @ CW 20 dBm
TX + TXHP pins connected 80 mA
VSMPS = 2 V, PA_DEGEN_ON
Measurements TX @ CW 10 dBm
10.5 mA
TX pin connected, TX Mode
Measurements TX @ CW 14 dBm
22 mA
TXHP pin connected, TXHP mode
413-479 MHz
Frequency range
826-958 MHz
2-(G)FSK 0.1-300 ks/s
Symbol rate 4-(G)FSK 0.1-300 ks/s
OOK/ASK 0.1-125 ks/s
Symbol rate accuracy ±100 ppm
Frequency deviation FDEV 0.15 - 500 kHz
If "Manchester" or "3-out-of-6" or FEC coding options are enabled the actual bit rate is affected as follows:
6.3.5 RF receiver
Characteristics measured over recommended operating conditions unless otherwise specified. All typical values
are referred to 25°C temperature, VBAT = 3.3 V, no frequency offset in the RX signal.
All performance figures are referred to the reference designs optimized for each different configuration. The
reference designs associated with each configuration are listed below:
• 169 MHz: STDES-WL3C4EEW
• 433 MHz: STDES-WL3C4SML
• 868 MHz: STDES-WL3C4SMH
• 915 MHz: STDES-WL3C4SHH
Two reference test conditions are used in the RX measurements: High performance mode (HPM), where the
priority is given to the performances, Low power mode (LPM) where the priority is given to the low consumption.
• High performance mode (HPM) conditions: VDD = 3.3V, TA = 25o C, SMPS ON, SMPS frequency 4 MHz
(unless otherwise stated), SMPS Vout =1.4V, 16 MHz system clock, HSIPLL mode, HSE GMC setting
0x0A.
• Low power mode (LPM) conditions: SMPS ON, SMPS frequency 4MHz (unless otherwise stated), SMPS
Vout =1.2V, LDO RF bypassed, 16 MHz system clock, HSE direct mode, HSE GMC setting 0x0A.
RX blocking and selectivity tests are performed in ETSI conditions: the wanted signal is 3dB higher than the ETSI
sensitivity, given by the following formula:
Interferers are continuous wave @ 6 MHz and 12 MHz 433 MHz -19
Input third order intercept point dBm
offset from carrier 868 MHz -19
433 MHz 151-j103
Input impedance at LNA Max. RX gain R // C 868 MHz 51-j107 Ω
169 MHz 176 - j265
Table 28. Blocking, selectivity and saturation at 169 MHz (SMPS clock frequency= 4 MHz)
Adjacent and Alternate channel rejection +12.5 kHz (adjacent channel) -35.5 -37.7
0.1% BER @ 2-GFSK BT=0.5 -12.5 kHz (adjacent channel) -35.4 -35.9
FDEV=2.4 kHz, DR = 2.4 kbit/s, CHF = +25 kHz (alternate channel) -35.3 -35.1
8 kHz
Wanted signal = 10LOG10(CHFkHz)-117+ dBm
3 dB = -105 dBm
Interferer CW -25 kHz (alternate channel) -35.5 -37.3
Channel spacing = 12.5 kHz
AFC OFF, GMC = 0x0A
Table 29. Saturation and image rejection at 169 MHz (SMPS clock frequency= 4 MHz)
Image rejection
Interferer CW at image
frequency
0.1% BER @ 2-GFSK BT=0.5 Wanted signal = -101 dBm
-41.1 -40.9
DR = 6.4 kbit/s, FDEV = CW at -600 kHz of offset
6.4 kHz, CHF = 20 kHz
Wanted signal =
10LOG10(CHFkHz)-117+ 3 dB
Table 31. Blocking, selectivity and saturation at 433 MHz (SMPS clock frequency= 4 MHz)
Selectivity and blocking 0.1% BER @ 2- +25 kHz (alternate channel) -40 -43
GFSK, BT = 0.5, FDEV=1.2 kHz, DR = -25 kHz (alternate channel) -40 -43
1.2 kbit/s, CHF = 4 kHz.
Image rejection -47 -47 dBm
Wanted signal = ETSI sensitivity + 3 dB =
-108 dBm. +2 MHz -24 -24
Not modulated interferer signal. -2 MHz -29 -29
±10 MHz -17 -18
±15 MHz -16 -16
+100 kHz (adjacent channel) -38 -42
Selectivity and blocking 0.1% BER @ 2-
-100 kHz (adjacent channel) -38 -42
GFSK, BT = 0.5, FDEV = 20 kHz , DR =
38.4 kbit/s, CHF = 100 kHz. +200 kHz (alternate channel) -38 -41
dBm
Wanted signal = ETSI sensitivity + 3 dB = -200 kHz (alternate channel) -44 -44
-94 dBm.
Image rejection
Not modulated interferer signal. -38 -39
Offset = -600 kHz
Table 32. Sensitivity at 868.5 MHz (SMPS clock frequency = 4.27 MHz)
1. For optimal results in 868 MHz sensitivity tests, the KRM feature needs to be used.
Table 33. Blocking, selectivity and saturation at 868 MHz (SMPS clock frequency = 4.27 MHz)
Selectivity and blocking 0.1% +25 kHz (alternate channel) -45 -51
BER @ 2-GFSK, BT = 0.5,
FDEV = 1.2 kHz , DR = -25 kHz (alternate channel) -45 -51
1.2 kbit/s, CHF = 4 kHz Image rejection
-52 -52 dB
Wanted signal = ETSI Offset = - 600 kHz
sensitivity + 3 dB = -108 dBm.
+2 MHz -29 -29
Not modulated interferer
signal. -2 MHz -30 -30
±10 MHz -19 -20
±15 MHz -17 -18
+100 kHz (adjacent channel) -44 -50
-100 kHz (adjacent channel) -44 -50
Selectivity and blocking 0.1%
BER @ 2-GFSK, BT = 0.5, +200 kHz (alternate channel) -45 -47
FDEV = 20 kHz, DR =
-200 kHz (alternate channel) -45 -48
38.4 kbit/s, CHF = 100 kHz.
Image rejection dB
Wanted signal = ETSI -41 -42
sensitivity + 3 dB = -94 dBm Offset = -600 kHz
Not modulated interferer ±2 MHz -26 -26
signal.
±10 MHz -18 -19
±15 MHz -17 -17
ETSI saturation at adjacent
channel 0.1% BER @ 2- Wanted signal = -68 dBm
GFSK, BT = 0.5, FDEV -8 -12 dBm
1.2 kHz, DR = 1.2 kbit/s, CHF Offset = ±25 kHz (adjacent channel)
= 4 kHz.
ETSI saturation at adjacent
channel 0.1% BER @ 2- Wanted signal = -54 dBm
GFSK, BT = 0.5, FDEV = -7 -11 dBm
20 kHz , DR = 38.4 kbit/s, Offset = ±100 kHz (adjacent channel)
CHF = 100 kHz.
6.3.6 RF transmitter
Characteristics measured over recommended operating conditions unless otherwise specified. All typical values
are referred to a temperature of 25 °C, VBAT = 3.3 V. All performance data is referred to the reference design with
a 50-ohm antenna connector.
Transmission measurements are performed for VDD = 3.3 V, TA = 25 °C, SMPS ON, SMPS frequency 4 MHz,
SMPS Vout value dependent on the desired output power =1.4V, 16 MHz system clock, HSIPLL mode, HSE GMC
setting 0x0A
TX measurements are given for HPM test conditions:
VDD = 3.3V, TA = 25o C, SMPS ON, SMPS frequency 4 MHz (unless otherwise stated), SMPS Vout according to
output power, 16 MHz system clock, HSI mode.
TX mode, SMPS = 2 V 14
TX mode, SMPS = 1.4 V 10
Output power step (all modes) All BOMs, all frequencies 0.5 dB
Spurious emissions harmonics 47-74 MHz, 87.5-118 MHz,174-230 MHz, 470-862 MHz - - -54
ETSI EN 300-220-14 Frequencies below 1 GHz - - -36
POUT = 16 dBm 169.4375 MHz Frequencies above 1 GHz - - -30
Spurious emissions harmonics 47-74 MHz, 87.5-118 MHz,174-230 MHz, 470-862 MHz - - -54
ETSI EN 300-220-14 Frequencies below 1 GHz - - -36
POUT = 10 dBm 169.4375 MHz Frequencies above 1 GHz - - -30
Measurements TX @ CW 10 dBm
11
TX pin connected, TX Mode
Supply current mA
Measurements TX @ CW 16 dBm
28
TXHP pin connected, TXHP mode
H1 As detailed above 10 16
H1 As detailed above 10 16 20
H2 As detailed above -59 -42 -34
H3 As detailed above -60 -53 -43
H4 As detailed above -62 -62 -68 dBm
H5 As detailed above -60 -57 -52
H6 As detailed above -61 -44 -38
H7 As detailed above -62 -52 -68
H1 As detailed above 10 16 20
H2 As detailed above -50 -42 -42
H3 As detailed above -58 -55 -52
H4 As detailed above -63 -59 -65 dBm
H5 As detailed above -61 -55 -46
H6 As detailed above -63 -34 -46
H7 As detailed above -61 -58 -68
Wanted signal =
PSENS+3dB, BER<10-3
C/ICOCHANNEL Co-channel interferer - 10 - dBc
2 kbit/s OOK modulated
interferer signal
Wanted signal =
PSENS+ 3dB, BER<10-3
C/IINBAND CW inband interferer - -28 - dBc
CW interferer at Foffset
> +/-30 kHz
Wanted signal =
PSENS+3 dB, BER<10-3
Modulated inband
C/IOOK_40K - 0 - dBc
interferer 40 kbit/s OOK modulated
interferer signal at
Foffset > +/- 30 kHz
Wanted signal =
PSENS+3 dB, BER<10-3
Modulated inband
C/IOOK_1M - -10 - dBc
interferer 1 Mbit/s OOK modulated
interferer signal at
Foffset > +/- 30 kHz
Wanted signal =
PSENS+3 dB, BER<10-3
C/ICOCHANNEL Co-channel interferer - 10 - dBc
2 kbit/s OOK interferer
modulated signal
Wanted signal =
PSENS+3dB, BER<10-3
C/IINBAND CW inband interferer - -29 - dBc
CW interferer at Foffset
> +/-30kHz
413-479 MHz
FRANGE Operating band - 413 433 479 MHz
Wanted signal =
PSENS+3 dB, BER<10-3
C/ICOCHANNEL Co-channel interferer - +5 - dBc
2 kbit/s OOK interferer
modulated signal
Wanted signal =
PSENS+3dB, BER<10-3
C/IINBAND CW inband interferer - -27 - dBc
CW interferer at Foffset
> +/-30 kHz
1. If not otherwise indicated, power values are given for Manchester OOK modulation: this means that the peak power is 3 dB
higher than the indicated average power.
1. A 48 MHz XTAL is specified for a specific reference: NX1612SA. A 48 MHz XTAL is specified for a specific reference:
NX1612SA.
2. For more information about the crystal selection, refer to the application note Oscillator design guide for STM8AF/AL/S,
STM32 MCUs and MPUs (AN2867).
OSCIN OSCOUT
CHSE - 6.7(1) 10.6(2) 14.33(3) pF
internal capacitor
For more information onthe crystal selection, refer to application note Oscillator design guide for STM8AF/AL/S,
STM32 MCUs and MPUs (AN2867).
OSC32_IN fLSE
OSC32_OUT
CL2
DT58413
Note: No external resistors are required between OSC32_IN and OSC32_OUT, and it is forbidden to add one.
In bypass mode, the LSE oscillator is switched off and the input pin is a standard GPIO. The external clocksignal
has to respect the I/O characteristics detailed in Section 6.3.15: I/O port characteristics. The recommend clock
input waveform is shown in the figure below.
tw(LSEH)
VLSEH
90%
10%
VLSEL
tr(LSE) t
tf(LSE) tw(LSEL)
DT58414
TLSE
Includes initialaccuracy,
ftolLSE Frequency tolerance stability over temperature, –500 - +500 ppm
aging and frequency pulling
VDD=3.3V
fLSI
LSI frequency TA = 30 °C 32.83 34.3 35.77 kHz
nominal
Typical corner
ΔfLSI /
Frequency variation
fLSI(TA) / Standard deviation - 140 - ppm/ºC
versus temperature
TRange
Write mode 3 -
Average consumption from
IDD Erase mode 3 - mA
VDD
Mass erase 5 -
1 kcycle(2) at TA = 85 °C 30
1 kcycle(2) at TA = 105 °C 15
10 kcycles(2) at TA = 85 °C 15
10 kcycles(2) at TA = 105 °C 10
1. CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
Table 58. RSTN pin characteristics (specified by design - not tested in production)
Note: • The reset network protects the device against parasitic resets.
• The user must ensure that the level on the RSTN pin can go below the VIL(RSTN) maximum level
specified in Table 58, otherwise the reset is not taken into account by the device.
• The external capacitor on RSTN must be placed as close as possible to the device.
Internal access
Rin VBOOST is enabled for VBAT < 2.7 V - - 550 Ω
resistance
Cin Input sampling capacitor - - 4 - pF
Ts Sampling period Default config - 1 - µs
Tsw Sampling time Default config - 125 - ns
DR Output data rate - - 200 - ksamples/s
FRMToutput Output data format - - 16 - bits
Single ended
ENOB SE Effective number of bits @1 kHz, -1 dBFs, Fs = 800 kHz, - 11 - bits
DS=4
ADC_ERR_1V7 - 13 - mV
ADC_ERR_2V4 Absolute error when used for battery - 0 - mV
ADC ERROR measurement at 1.7 V, 2.4 V, 3.0 V,
ADC_ERR_3V0 3.6 V - -9 - mV
ADC_ERR_3V6 - -22 - mV
Temperature range =
TrERR Error in temperature - +/-2 - °C
-20 to 85 °C
TSLOPE Average temperature coefficient - - 10 - LSB/°C
Prescaler
PR[2:0] bits Min timeout RL[11:0] = 0x000 Max timeout RL[11:0] = 0xFFF Unit
divider
/4 0 0.125 512
/8 1 0.250 1024
/16 2 0.500 2048
/32 3 1.0 4096 ms
/64 4 2.0 8192
/128 5 4.0 16384
/256 6 or 7 8.0 32768
Table 63. I2C analog filter characteristics (specified by design - not tested in production)
Master mode 32
fSCK SPI clock frequency - - MHz
Slave mode 32(1)
tsu(NSS) NSS setup time - 4 / fPCLK - - -
tw(SCKH)
SCK high and low time Master mode 1/ fPCLK -1.5 1/ fPCLK 1/ fPCLK + 1 -
tw(SCKL)
1. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI), which has to fit into SCK low
or high phase preceding the SCK sampling edge. This value can be achieved .
DT57477V1
Figure 18. SPI timing diagram - master mode
DT57478V1
Table 65. Current consumption in Deepstop mode with LCD clock source LSI, duty 1/4, bias 1/3
Condition
Symbol Parameter Unit
Clock source VDD (V) -40 °C -20 °C 0 °C 27 °C 50 °C 85 °C
Table 66. Current consumption in Deepstop mode with LCD clock source LSE, duty 1/4, bias 1/3
Condition
Symbol Parameter Unit
Clock source VDD (V) -40 °C -20 °C 0 °C 27 °C 50 °C 85 °C
Table 67. Current consumption in Deepstop with LCD clock source LSI, duty 1/8, bias 1/4
Condition
Symbol Parameter Unit
Clock source VDD (V) -40 °C -20 °C 0 °C 27 °C 50 °C 85 °C
Table 68. Current consumption in Deepstop with LCD clock source LSE, duty 1/8, bias 1/4
Condition
Symbol Parameter Unit
Clock source VDD (V) -40 °C -20 °C 0 °C 27 °C 50 °C 85 °C
25 °C 50 °C 70 °C 85 °C 25 °C 50 °C 70 °C 85 °C
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK2
packages, depending on their level of environmental compliance. ECOPACK2 specifications, grade definitions,
and product status are available at: www.st.com. ECOPACK2 is an ST trademark.
E2
NX b
ddd
bbb
C
AB
fff C AB
L (48X) k
fff C AB
D2
BOTTOM VIEW
ccc C
A
SEATING PLANE
eee C A1
C
SIDE VIEW
A D aaa C 2X
aaa C 2X
E A0BE_F_VFQFPN48_ME_V1
PIN1 INDEX
B
TOP VIEW
Millimetres Inches(1)
Symbol Note
Min Typ Max Min Typ Max
4.65
37
48
0.65
PIN 1 ID
0.25
0.20
1 36
4.50
4.65
0.40
12 25
A0BE_F_VFQFPN48_FP_V1
13 24
4.50
ddd C
SEATNG PLANE
A1
A3
SIDE VIEW
17 e
8
b
E2 E
24 L
42_VFQFPN32_CALAMBA_ME_V1
PIN #1 ID 32 25
CHAMFER 0.35
b L
D2
BOTTOM VIEW
Millimetres Inches(1)
Symbol
Min Typ Max Min Typ Max
A1 0 - 0.05 0 - 0.0020
A3 - 0.20 - - 0.008 -
b 0.18 0.25 0.30 0.0070 0.0098 0.0118
D 4.90 5.00 5.10 0.1929 0.19 0.2008
E 4.90 5.00 5.10 0.1929 0.19 0.2008
D2 3.60 3.70 3.80 0.1417 0.1457 0.1496
E2 3.60 3.70 3.80 0.1417 0.1457 0.1496
e - 0.50 - - 0.0197 -
L 0.30 0.40 0.50 0.0118 0.0157 0.0197
ddd - - 0.05 - - 0.0020
3.50
0.80
0.25
0.25
0.50
3.50 5.70
42_VFQFPN32_CALAMBA_FP_V1
4.10
0.30
8 Ordering information
Example: STM32 WL 33 K C V 6 TR
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
WL = wireless long-range
Device subfamily
33 = Cortex-M0+ full set of features
Pin count
C = 48
K = 32
Memory configuration
8 = 64 Kbyte flash/16 Kbyte RAM
B = 128 Kbyte flash/32 Kbyte RAM
C = 256 Kbyte flash/32 Kbyte RAM
Package(1)
V = VFQFPN
Temperature range
6 = -40 °C up to +85 °C
7 = -40 °C up to +105 °C
Frequency band options
No character = 413-479 MHz and 868-958 MHz
A = 159 -185 MHz
Packing
TR = tape and reel
1. ECOPACK2 (RoHS compliant and free of brominated, chlorinated and antimony oxide flame retardants).
Revision history
Table 74. Document revision history
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Arm Cortex-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.1 Embedded flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.3 Embedded OTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.4 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 RF subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.1 RF front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.2 TX and RX event alert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.3 Low power autonomous wake up receiver (LPAWUR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.1 SMPS step-down converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 SMPS bypass on-the-fly (BOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.3 Linear voltage regulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.4 Power voltage supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6.1 Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6.2 Deepstop mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6.3 Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Reset management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8.1 System clock details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9 Boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 General purpose inputs/outputs (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13 Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16 General purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
List of tables
Table 1. Definition of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 2. SMPS output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 4. Alternate function port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 5. Alternate function port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 6. Application circuit external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 7. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 8. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 9. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 10. Operating range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 11. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 12. Shutdown and Reset current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 13. Current consumption in Deepstop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 14. Current consumption in Run and WFI mode with SMPS ON (SMPS frequency 4 MHz, SMPS Vout =1.4 V) . . . . . 42
Table 15. Current consumption in Run and WFI mode with SMPS bypassed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 16. Peripheral current consumption at VDD=3.3V, T=25°C System clock 32 MHz, SMPS ON . . . . . . . . . . . . . . . . . 43
Table 17. Current consumption in reception, fc = 915 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 18. Current consumption in reception, fc = 868 MHz (SMPS clock frequency = 4.27 MHz) . . . . . . . . . . . . . . . . . . . 44
Table 19. Current consumption in reception, fc = 433 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 20. Current consumption in transmission, fc = 433 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 21. Current consumption in transmission mode, fc = 868 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 22. Current consumption in transmission mode, fc = 915 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 23. RF state transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 24. General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 25. Data rate with different coding options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 26. RF receiver characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 27. Sensitivity at 169 MHz (SMPS clock frequency= 4 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 28. Blocking, selectivity and saturation at 169 MHz (SMPS clock frequency= 4 MHz) . . . . . . . . . . . . . . . . . . . . . . . 47
Table 29. Saturation and image rejection at 169 MHz (SMPS clock frequency= 4 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 30. Sensitivity at 433 MHz (SMPS clock frequency= 4 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 31. Blocking, selectivity and saturation at 433 MHz (SMPS clock frequency= 4 MHz) . . . . . . . . . . . . . . . . . . . . . . . 49
Table 32. Sensitivity at 868.5 MHz (SMPS clock frequency = 4.27 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 33. Blocking, selectivity and saturation at 868 MHz (SMPS clock frequency = 4.27 MHz) . . . . . . . . . . . . . . . . . . . . 51
Table 34. Sensitivity at 915 MHz (SMPS clock frequency= 4 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 35. Blocking, selectivity and saturation at 915 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 36. RF transmitter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 37. PA impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 38. Regulatory standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 39. 169 MHz Band +16 dBm RF transmitter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 40. 169 MHz Band +10 dBm RF transmitter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 41. Current consumption in transmission mode, fc = 169 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 42. Harmonic emission at 433 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 43. Harmonic emission at 868 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 44. Harmonic emission at 915 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 45. Frequency synthesizer parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 46. Low-power autonomous wake-up receiver electrical specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 47. HSE frequency drift versus power supply drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 48. HSE crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 49. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 50. Low-speed external user clock characteristics(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 51. Low-speed external user clockcharacteristics(1) – Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 52. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 53. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. STM32WL33xx system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. Sub-1GHz IP block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. Wake up radio block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. LPAWUR frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Power supply configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Power supply domains overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8. Fast clock tree generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 9. Pinout top view (QFN32 package - 5 mm x 5 mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 10. Pinout top view (VFQFPN48 package - 6 mm x 6 mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 11. STM32WL33xx application circuit without SMPS, VFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 12. STM32WL33xx application circuit with SMPS, VFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 13. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 14. Low-speed external clocksource AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 15. Recommended RSTN pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 16. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 17. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 18. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 19. VFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 20. VFQFPN48- Footprint example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 21. VFQFPN32 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 22. VFQFPN32 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81