0% found this document useful (0 votes)
38 views13 pages

Tut6 Sols 2016-17

Uploaded by

istiaq8888
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
38 views13 pages

Tut6 Sols 2016-17

Uploaded by

istiaq8888
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 13

Tutorial 6 Network Synthesis EEL2186 Circuits and Signals

__________________________________________________________________________________
_
Questions
1. Check the positive realness of the following function
s 3
F ( s) 
( s  1)

2. Identify the given impedance functions whether they are of RL, RC or LC


networks.

(s 2  0.5)(s 2  1.5)(s 2  3)
i. s(s 2  1)(s 2  2)

(s  2)(s  5)
ii. (s  1)(s  3)

3. Is it possible to realize the following function using canonical forms?

s 2  2s  6
s(s  3)

4. Find the network for the given functions below by:


a. Foster 1st and 2nd form
b. Cauer 1st and 2nd form

s(s 2  4)
Z(s) 
i. s2 1

s(s 2  2)(s 2  4)
Y(s) 
ii. (s 2  1)(s 2  3)(s 2  5)

2s 2  5
Z s   2
s s  1
5. Determine whether the function is positive real or not.

6. Determine the range of  such that the polynomial

__________________________________________________________________________________
_ Page 1 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_
P ( s ) s 4  s 3  4 s 2   s  3 is Hurwitz.

Solutions
1. Check the positive realness of the following function
s 3
F ( s) 
( s  1)

F(s) has all the poles lying on the left half of the s – plane. The other
condition required for prf is Re [F (j)]  0 for all values of,
(since, no pole falls on j axis second necessary and sufficient
condition need not to be checked).

 j  3   ( j  3)(1  j ) 
ReF ( j )  Re   Re  
 j  1   12 

 j  3   2  3 j   3   2  2 j  3   2
 Re   Re  
 1   2
  1   2
 1
2

Thus, Re [F (j)]  0 for all values of. Hence F(s) is a positive


real function.

2. Identify the given impedance functions whether they are of RL, RC or LC


networks.

(s 2  0.5)(s 2  1.5)(s 2  3)
2 2
.a. s (s  1)( s  2)
 Find the poles and zeros
Zeros are: ± j√ 0 .5 , ± j√ 1. 5 , ± j√ 3

__________________________________________________________________________________
_ Page 2 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_
Poles are:0, ± j1, ± j√ 2

 Since all the poles and zeros interlace on “j” axis, it is a


LC function.

(s  2)(s  5)
b. (s  1)(s  3)
 Find the poles and zeros
Zeros are: -2, -5
Poles are: -1, -3
 Critical frequency far away from the origin is zero (-5)
 All the poles and zeros are simple and interlaced on
negative real axis of the s-plane
 Hence it is an RC network.

s 2  2s  6
3.
s(s  3)
 Find the poles and zeros
Zeros are: -1 + j 2.236 and -1 – j 2.236
Poles are: 0, - 3
 Since it is not a ratio of even to odd or odd to even
function, it is not a LC function
 Since the roots are complex [ not simple ], it is not a RC/RL
function

__________________________________________________________________________________
_ Page 3 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_
Since it is neither a LC nor a RC/RL network function, it
can not be realized by using any canonical form.

s(s 2  4)
Z(s)  2
4. a. i. s 1
Since it is a ratio of even to odd function, it is a LC function.
Foster – I form:

s(s 2  4)
Z(s)  2
s 1
Partial fraction of the above function leads to
3s
2
Z(s) = s + s  1
Since it is a series function, it has a series of two impedance
terms.

Foster – I network
Foster II form:
2
1 s 1
2
Y(s) = Z ( s ) = s ( s  4)

Partial fraction of the function leads to

__________________________________________________________________________________
_ Page 4 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_
1 ( s 2  1)( s 13/)(4s  35s) / 4
2 2

Y ( s) s ( s 2  2)( s 2  
4) 2
Y(s) = s s 4

Foster – II network
4. a.ii.

s(s 2  2)(s 2  4)
Y(s)  2
(s  1)(s 2  3)(s 2  5)

Foster – I form:

1 ( s 2  1)( s 2  3)( s 2  5)
 2 2
Z(s) = Y ( s ) s ( s  2)( s  4)

Partial fraction of the above function leads to

3s / 4 3s / 8 15 / 8
2
 2 s
Z(s) = s  2 s  4 s

__________________________________________________________________________________
_ Page 5 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_

Foster – I network
Foster- II form:

s(s 2  2)(s 2  4)
Y(s)  2
(s  1)(s 2  3)(s 2  5)
Partial fraction leads to

3s / 8 s/4 3s / 8
2
 2
 2
Y(s) = s  1 s  3 s 5

Foster – II network
4. b.i
Cauer – I form:

s(s 2  4)
Z(s)  2
s 1
The CFE of the function leads to

__________________________________________________________________________________
_ Page 6 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_

Cauer – I network
Cauer – II form:

4s  s 3
2
Z(s) = 1  s [Rearrange both numerator and denominator in an
ascending order]

1 1 s2
 3
Y(s) = Z ( s ) 4 s  s
By taking CFE of Y(s),
4 s  s 3 )1  s 2 (1 / 4 s
1 s2 / 4
   
3s 2 / 4)4 s  s 3 (16 / 3s
4s
   
s 3 )3s 2 / 4(3 / 4 s
3s 2 / 4
  
0
  

__________________________________________________________________________________
_ Page 7 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_

Cauer – II network
4b.ii.
Cauer-I form:

( s2 +1 )( s 2 +3 )( s 2 +5 ) s 6 + 9 s 4 + 23 s 2 +15
2 2
=
Z(s) = s ( s + 2)( s + 4 ) s5 +6 s 3 + 8 s
s5 + 6 s 3 + 8 s ) s 6 + 9 s 4 + 23 s 2 +15( s
s6 +6 s4 +8 s2
−−−−−−−−
3 s4 +15 s2 + 15) s 5 +6 s 3 +8 s( s/ 3
s5 +5 s 3 +5 s
−−−−−−−−
s3 +3 s ) 3 s 4 +15 s 2 +15 (3 s
3 s4+ 9 s2
−−−−−
6 s 2 +15 ) s3 +3 s ( s / 6
s 3 +15 s /6
−−−−−−−
2
3 s /6 ) 6 s +15 (12 s
2
6s
−−−−−−
15 ) 3 s / 6( s/ 30
3s/6
−−−−
0
−−−−−

__________________________________________________________________________________
_ Page 8 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_

Cauer – I network

__________________________________________________________________________________
_ Page 9 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_
Cauer – II form:
Rearrange the numerator and denominator in ascending order
15+ 23 s 2 +9 s 4 + s6
Z ( s )=
8 s+ 6 s 3 + s5
Cauer – II network

3 5 2 4 6 15
8 s+6 s +s ) 15+23 s +9 s + s (
8s
45 2 15 4
15+ s+ s
4 8
47 2 57 4 6 32
s + s + s ) 8 s+ 6 s 3 + s5 (
4 8 47 s
228 3 32 5
8 s+ s + s
47 47
54 3 15 5 47 2 57 4 6 2209
s + s ) s + s +s (
47 47 4 8 216 s
47 2 235 4
s + s
4 72
139 4 6 54 3 15 4 1944
s +s ) s + s (
36 47 47 6533 s
54 3 1944 5
s + s
47 6533
3 139 4 6 19321
s5 ) s +s (
139 36 108 s
139 4
s
36
3 3
s6 ) s5(
139 139 s
3
s5
139

__________________________________________________________________________________
_ Page 10 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_

5.

__________________________________________________________________________________
_ Page 11 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_

6.

__________________________________________________________________________________
_ Page 12 of 13
Tutorial 6 Network Synthesis EEL2186 Circuits and Signals
__________________________________________________________________________________
_

__________________________________________________________________________________
_ Page 13 of 13

You might also like