Tutorial 6 Network Synthesis                                   EEL2186 Circuits and Signals
__________________________________________________________________________________
_
        Questions
1.    Check the positive realness of the following function
                  s 3
      F ( s) 
                 ( s  1)
2.    Identify the given impedance functions whether they are of RL, RC or LC
      networks.
             (s 2  0.5)(s 2  1.5)(s 2  3)
       i.          s(s 2  1)(s 2  2)
             (s  2)(s  5)
      ii.    (s  1)(s  3)
3.    Is it possible to realize the following function using canonical forms?
       s 2  2s  6
          s(s  3)
4.    Find the network for the given functions below by:
      a. Foster 1st and 2nd form
      b. Cauer 1st and 2nd form
                      s(s 2  4)
             Z(s) 
       i.               s2 1
                           s(s 2  2)(s 2  4)
             Y(s) 
      ii.              (s 2  1)(s 2  3)(s 2  5)
                                                 2s 2  5
                                        Z s   2
                                                s s  1
5. Determine whether the function                           is positive real or not.
6. Determine the range of  such that the polynomial
__________________________________________________________________________________
_                                     Page 1 of 13
Tutorial 6 Network Synthesis                               EEL2186 Circuits and Signals
__________________________________________________________________________________
_
     P ( s ) s 4  s 3  4 s 2   s  3 is Hurwitz.
               Solutions
1. Check the positive realness of the following function
              s 3
 F ( s) 
             ( s  1)
F(s) has all the poles lying on the left half of the s – plane. The other
condition required for prf is Re [F (j)]  0 for all values of,
(since, no pole falls on j axis second necessary and sufficient
condition need not to be checked).
                  j  3        ( j  3)(1  j ) 
ReF ( j )  Re          Re                     
                  j  1             12          
                       j  3   2  3 j       3   2  2 j  3   2
                   Re                       Re                 
                            1    2
                                                      1   2
                                                                    1
                                                                          2
Thus, Re [F (j)]  0 for all values of. Hence F(s) is a positive
real function.
2.   Identify the given impedance functions whether they are of RL, RC or LC
networks.
     (s 2  0.5)(s 2  1.5)(s 2  3)
                2         2
 .a.       s (s    1)( s    2)
        Find the poles and zeros
          Zeros are: ± j√ 0 .5 , ± j√ 1. 5 , ± j√ 3
__________________________________________________________________________________
_                                     Page 2 of 13
Tutorial 6 Network Synthesis                          EEL2186 Circuits and Signals
__________________________________________________________________________________
_
           Poles are:0, ± j1, ± j√ 2
       Since all the poles and zeros interlace on “j” axis, it is a
        LC function.
   (s  2)(s  5)
b. (s  1)(s  3)
       Find the poles and zeros
        Zeros are: -2, -5
           Poles are: -1, -3
       Critical frequency far away from the origin is zero (-5)
       All the poles and zeros are simple and interlaced on
          negative real axis of the s-plane
       Hence it is an RC network.
     s 2  2s  6
3.
        s(s  3)
       Find the poles and zeros
        Zeros are: -1 + j 2.236 and -1 – j 2.236
           Poles are: 0, - 3
       Since it is not a ratio of even to odd or odd to even
          function, it is not a LC function
       Since the roots are complex [ not simple ], it is not a RC/RL
          function
__________________________________________________________________________________
_                                     Page 3 of 13
Tutorial 6 Network Synthesis                          EEL2186 Circuits and Signals
__________________________________________________________________________________
_
           Since it is neither a LC nor a RC/RL network function, it
           can not be realized by using any canonical form.
                 s(s 2  4)
           Z(s)  2
4. a. i.           s 1
Since it is a ratio of even to odd function, it is a LC function.
Foster – I form:
                 s(s 2  4)
           Z(s)  2
                   s 1
        Partial fraction of the above function leads to
                    3s
                    2
        Z(s) = s + s  1
        Since it is a series function, it has a series of two impedance
terms.
                                Foster – I network
Foster II form:
                          2
         1          s 1
                       2
Y(s) = Z ( s ) = s ( s    4)
Partial fraction of the function leads to
__________________________________________________________________________________
_                                     Page 4 of 13
               Tutorial 6 Network Synthesis                          EEL2186 Circuits and Signals
               __________________________________________________________________________________
               _
  1      ( s 2  1)( s 13/)(4s  35s) / 4
                     2         2
       
Y ( s)        s ( s 2  2)( s 2  
                                  4) 2
                  Y(s) = s          s 4
                                              Foster – II network
               4. a.ii.
                         s(s 2  2)(s 2  4)
                Y(s)  2
                      (s  1)(s 2  3)(s 2  5)
               Foster – I form:
                                1       ( s 2  1)( s 2  3)( s 2  5)
                                                  2         2
                       Z(s) = Y ( s )        s ( s    2)( s    4)
                       Partial fraction of the above function leads to
                              3s / 4   3s / 8     15 / 8
                               2
                                      2      s
                       Z(s) = s  2 s  4           s
               __________________________________________________________________________________
               _                                     Page 5 of 13
Tutorial 6 Network Synthesis                          EEL2186 Circuits and Signals
__________________________________________________________________________________
_
                               Foster – I network
Foster- II form:
                  s(s 2  2)(s 2  4)
         Y(s)  2
               (s  1)(s 2  3)(s 2  5)
         Partial fraction leads to
                3s / 8      s/4     3s / 8
                  2
                           2
                                     2
         Y(s) = s    1   s    3   s   5
                               Foster – II network
4. b.i
Cauer – I form:
               s(s 2  4)
         Z(s)  2
                 s 1
         The CFE of the function leads to
__________________________________________________________________________________
_                                     Page 6 of 13
Tutorial 6 Network Synthesis                              EEL2186 Circuits and Signals
__________________________________________________________________________________
_
                                      Cauer – I network
Cauer – II form:
       4s  s 3
            2
Z(s) = 1  s [Rearrange both numerator and denominator in an
ascending order]
         1       1 s2
                        3
Y(s) = Z ( s )   4 s  s
By taking CFE of Y(s),
4 s  s 3 )1  s 2 (1 / 4 s
             1 s2 / 4
                 
             3s 2 / 4)4 s  s 3 (16 / 3s
                        4s
                           
                               s 3 )3s 2 / 4(3 / 4 s
                                  3s 2 / 4
                                    
                                  0
                                    
__________________________________________________________________________________
_                                     Page 7 of 13
Tutorial 6 Network Synthesis                           EEL2186 Circuits and Signals
__________________________________________________________________________________
_
                               Cauer – II network
4b.ii.
Cauer-I form:
       ( s2 +1 )( s 2 +3 )( s 2 +5 ) s 6 + 9 s 4 + 23 s 2 +15
                2        2
                                    =
Z(s) =     s ( s + 2)( s + 4 )            s5 +6 s 3 + 8 s
s5 + 6 s 3 + 8 s ) s 6 + 9 s 4 + 23 s 2 +15( s
           s6 +6 s4 +8 s2
           −−−−−−−−
              3 s4 +15 s2 + 15) s 5 +6 s 3 +8 s( s/ 3
                              s5 +5 s 3 +5 s
                              −−−−−−−−
                                 s3 +3 s ) 3 s 4 +15 s 2 +15 (3 s
                                          3 s4+ 9 s2
                                              −−−−−
                                              6 s 2 +15 ) s3 +3 s ( s / 6
                                                  s 3 +15 s /6
                                                      −−−−−−−
                                                                    2
                                                        3 s /6 ) 6 s +15 (12 s
                                                               2
                                                            6s
                                                           −−−−−−
                                                               15 ) 3 s / 6( s/ 30
                                                                  3s/6
                                                                  −−−−
                                                                  0
                                                               −−−−−
__________________________________________________________________________________
_                                     Page 8 of 13
Tutorial 6 Network Synthesis                          EEL2186 Circuits and Signals
__________________________________________________________________________________
_
                               Cauer – I network
__________________________________________________________________________________
_                                     Page 9 of 13
Tutorial 6 Network Synthesis                            EEL2186 Circuits and Signals
__________________________________________________________________________________
_
Cauer – II form:
Rearrange the numerator and denominator in ascending order
         15+ 23 s 2 +9 s 4 + s6
Z ( s )=
            8 s+ 6 s 3 + s5
Cauer – II network
            3      5             2       4     6   15
8 s+6 s +s ) 15+23 s +9 s + s (
                                                   8s
          45 2 15 4
    15+        s+       s
          4         8
47 2 57 4 6                              32
     s +       s + s ) 8 s+ 6 s 3 + s5 (
4         8                              47 s
         228 3 32 5
  8 s+          s +      s
         47         47
54 3 15 5 47 2 57 4 6 2209
     s +       s )      s + s +s (
47         47      4        8             216 s
     47 2 235 4
          s +        s
     4         72
139 4 6 54 3 15 4 1944
       s +s )        s +      s (
36               47       47      6533 s
   54 3 1944 5
        s +           s
   47         6533
3           139 4 6 19321
       s5 )       s +s (
139         36             108 s
      139 4
             s
      36
     3          3
s6 )        s5(
     139        139 s
  3
         s5
  139
   ⋅
__________________________________________________________________________________
_                                    Page 10 of 13
Tutorial 6 Network Synthesis                          EEL2186 Circuits and Signals
__________________________________________________________________________________
_
5.
__________________________________________________________________________________
_                                    Page 11 of 13
Tutorial 6 Network Synthesis                          EEL2186 Circuits and Signals
__________________________________________________________________________________
_
6.
__________________________________________________________________________________
_                                    Page 12 of 13
Tutorial 6 Network Synthesis                          EEL2186 Circuits and Signals
__________________________________________________________________________________
_
__________________________________________________________________________________
_                                    Page 13 of 13