Thermodynamics 2
Thermodynamics 2
1
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Ranking Cycle
Describe the following graphs as a practical and technically feasible cycle
applied to commonly used refrigeration systems.
W=QH - QC 1.1
w = qH - qC 1.2 per unit mass
2
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
qH qC
− = 0( 1. 3 )
TH TC
3
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Examination of Fig. 1.1, indicates that the compression and expansion stages
of the Carnot refrigerator occur within the two-phase region, which is
technically not applicable. The problem can be eliminated by allowing the
refrigerant to evaporate completely in the evaporator producing a saturated
vapor.
Isentropic compression of the refrigerant to the condenser pressure then
produces a superheated value at point 3, in Fig 1.2 (a) and Fig 1.2 (b). The
fluid leaving the condenser is mainly liquid, its specific volume is relatively
low, so the work produced in the expander is low or negligible; which can be
replaced by isenthalpic throttling, which are much cheaper than expanders.
h 2 − h1
COP = ( 1 .11 )
( h3 − h4 ) − ( h2 − h1 )
o o
Q C =m qC = m ( h2 − h1 )(1 . 12 )
o QC
m = ( 1 . 13 )
h2 − h1
4
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
o QC
m = ( 1 . 17 )
h2 − h1
5
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
6
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
W TS
η = = 1− ( 1 . 19 )
qH T H
( )
TH
qH = W ( 1 . 20 )
T H −T S
TH T S −T C
Q H = qC . ( 1. 21)
TH − TS TC
7
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
8
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
LINDE PROCESS
SOLUTION
(b) To determine the mass flow, the balance is performed on the condenser
( c) To calculate the net work, balance the compressor considering the Qo input
10
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Solution
o
a) q C =4 kJ / s W =1 .5 kW
qC 4
COP= o
= =2. 667
1.5
W
b) q H =qC +W
q H =(4 +1. 5 )
q H =5 . 5 kJ /s
TC
COP=
c) T H −T C
T C =T H ( COP+1
COP
)
T H = 40+273 . 15=315 . 15 ° K
T C =315 .15 (
2 .667
3 . 667 )
T C =227 .753 ° K
T C =−45 . 40 °C
SOLUTION
11
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
S 4 =S 1
S 4 =S 1=S 1 f +x 1 ( S1 g −S 1f )
S 4 −S 1 f 0 . 07892−0 . 0733
x 1= = =0. 2935
S1 g−S 1 f 0 . 22714−0 .01733
h1 =h1 f +x 1 (h 1 g−h1 f )=7 .505+0. 2935 (100 .799−7 .505 )=34 .887 BTU /lbm
o
5
m= =0 . 0759 lbm /s
100 . 799−34 . 887
12
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
d. For the solution the following figure must be taken into account:
In an isentropic process:
S3 =S2 =0 . 22714=Sg
For P = 101.37 psia:
S3 =0 . 22714 BTU /lbm−° R=S 2=Sg
Figure:
h3 =118. 3 BTU /lbm
h2 −h4 100 .799−37 . 978
COP( a)= = =3. 59
h3 −h 2 118−100 .799
h −h 100. 799−34 .887
COP( b)= 2 1 = =3 . 766
h3 −h2 118−100 . 799
13
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
o
315 139
QC = =26 . 26 TON
12 000 (Refrigeration units)
At point 3
S2 =S3 =1 .3352 BTU / lbm−RP=158 psia vapor recalentado
T 3=300 ° F
h3 =709 BTU /lbm ammonia graph
Point 4
T 4 =80 ° F Psat
4 =153 psia
h 4 =h f =132 BTU /lbm
S 4 =S f =0. 2749 BTU /lbm−° R
SOLUTION
14
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
R – 503 (I)
q C =h2 −h1 =50−0 .25
q C =49 . 75 BTU /lbm
o
o QC 20000 BTU / h
m= =
qC 49 . 75 BTU / lbm
o
m =402 lbm/h
W =( h 2−h 1 )+( h4 −h3 ): h4 =h 1
W =h2 −h3 =50−88=−38 BTU /lbm
o o
W Ι =m W =−15 276 BTU / h
q H =h4 −h 3=−87 .75 BTU /lbm
o
Q H =m q H =35 275 BTU / h heat removed in the low temperature condenser
o
Q C =20000 BTU / h heat absorbed in the evaporator
R – 22 (II)
15
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
o o
o QC 35 275
m= = =518 . 75lbm / h
Q C =35 275 BTU / h=QH ( Ι ) qC 98−30
o o o
W =m (h2 −h3 )=518 . 75 (98−132 ) W ΙΙ=−17 638 BTU / h
Pure methane gas is liquefied in a simple Linde process, compression is 6 MPa and
pre-cooling is 300 °K, the separator is maintained at a pressure of 100 kPa and the
non-liquefied gas in the process at this pressure stops cooling at 295 °K. What
fraction of gas is liquefied in the process and what is the temperature of the high
pressure gas entering the throttling valve?
16
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Z=0 . 0541
Then:
(h 4 −h3 ) + (1 − Z ) ( h8 − h7 ) = 0
a P = 6 MPa y h = 769 .2 KJ / Kg
T =206 . 5 K
17
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
PROPERTIES OF MIXTURES
A. Mixed in ideal behavior
Ideal mixtures are additive.
Dalton's law of partial pressures is considered.
Amagat's law of partial volumes.
B. Royal mix.
Mixing rule using equations of state
Using generalized correlations.
Molecular properties inherent to each component are
taken into account.
SEPARATION PROCESSES
TO. IDEAL SYSTEMS.
For its treatment, Raoult's law is considered.
y i P=x i Psat i (2.1)
B. REAL SYSTEMS
In the vapor phase, the fugacity coefficient is considered
as a function of the temperature and the molar fraction of
each component.
In the liquid phase, the activity coefficient is considered
as a function of the temperature and quantity of each
component; appropriate models are used for its
calculations, according to the nature of the mixtures.
Also in the real behavior, the working pressures of the
system must be considered, whether they are moderate or
high, if the liquid phase is compressed, the Poyting factor
is considered.
P v
i exp ∫P 0
Φ . y i P=γ i x i PSat dP
i RT (2.2)
18
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
[ d (ng )
dP ]
= nv
(2.4)
[ ]d (ng )
dT
=−ns
(2.4)
Considering each phase as an open system, with respect to another phase, the
Gibbs free energy is a function of pressure, temperature and the number of
moles of each component.
G=g (P , T ,n1 ,n 2 , n3 , .. . .. .. . .. .. . ni ) (2.5)
d (ng )= [ ]
∂(ng )
∂P T , ni
dP− [ ]
∂(ng )
dT P , ni
dT + ∑
i
[ ]
∂(ng)
∂ni P ,T ,n j
dni
(2.6)
d (ng )=nvdP−nsdT + ∑
i [ ]
∂(ng )
∂ ni P ,T , n j
dni
(2.7)
After equations (2.6) and (2.7), the chemical potential is defined as follows:
μi =
[ ] d (ng )
dni P,T ,nj
(2.8)
19
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Considering that there is no expansion work on the system, the following can
be deduced:
−dg=0
dnl +dn v=0
dnl =−dn v
dn v ( g v−gl )=0
gl =gv (2.12)
From the last relation of (2.12), it expresses the condition of phase
equilibrium, when a system is in a state of equilibrium, all its properties
remain in a state of equilibrium, all its properties remain constant, and the
most stable states are those with the lowest energy content, that is, of
maximum entropy, at constant entropy the energy is minimal indicating
stable equilibrium.
20
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
∑ ( μli−μ vi )=0
i
V=C–F+2
21
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
h=u+Pv
g=h−Ts
a=u−Ts (2.14)
These relationships can be expressed in the form of differentials as:
du=Tds−Pdv
dh=Tds+vdP
dg=sdT+vdP
da=−sdT−Pdv (2.15)
This last relation expresses the partial pressure of component i of the ideal system.
Let M be an extensive thermodynamic property and m an intensive property expressed
per unit mass or mole of substance.
nm( P ,T )=M (P , T )=∑ ni mi ( P ,T )
i (2.19)
m( P ,T )=∑ y i mi ( P ,T )
(2.20)
Equation (2.19) represents the value of a thermodynamic property of the mixture as a
function of the number of moles at a given pressure and temperature and the
relationship (2.20) the value of an intensive property in terms of the molar fraction yi.
They can then be expressed for different thermodynamic properties as:
h( P , T )=∑ y i h i ( P ,T )
(2.21)
u( P , T )=∑ y i ui (P , T )
(2.22)
These last relations express the values of the enthalpy and the internal energy of a
mixture.
Then for the variation of the thermodynamic properties of mixing we can generalize:
Δm=m( P ,T )−∑ y i mi (P ,T )
(2.23)
22
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
From the above relationships Δm=0 , the system is found to be in equilibrium, and is
assumed to be the behavior of a pure substance.
That is Δh=0 Δu=0 Δv =0 , , the variations for ideal mixing.
The entropy variation in an ideal mixture is not equal to the previous properties as we
will see:
Tds=dh−vdP (2.24)
1
s( P , T )−si ( P , T )=−R ln( )
yi
(2.27)
1
si ( P , T )=s( P , T )+R ln( )
yi
(2.28)
s( P , T )=∑ y i si ( P , T )
(2.29)
[
s( P , T )=∑ y i s( P , T )+R ln(
1
yi
)
] (2.30)
g=h−Ts (2.33)
g( P , T )=∑ y i h( P ;T )−T
[ 1
∑ y i s( P ,T )+R ∑ yi ln( y )
i ] (2.34)
1
g( P , T )=∑ y i h( P ;T )−T ∑ y i s( P;T )−RT ∑ y i ln( )
yi (2.35)
23
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
1
g( P , T )=∑ y i gi ( P ;T )−RT ∑ y i ln( )
yi (2.36)
μi =
[ ]d (ng )
dni P,T ,nj
APPLICATION PROBLEMS
1. A rigid container divided into two compartments by a separator. One compartment
contains 7 kg of oxygen at 40oC and 100 kPa, and the other contains 4 kg of nitrogen
gas at 20oC and 150 kPa. The separator is then removed and the gases are allowed to
mix. Calculate:
a. The temperature of the mixture and
b. The pressure of the mixture after equilibrium has been established.
3 A volume of 0.3 m3 of oxygen at 200 K and 8 MPa is mixed with 0.4 m3 of nitrogen
at the same temperature and pressure, forming a mixture at 200 K and 8 MPa.
Calculate the volume of the mixture using the ideal gas equation and Amagat's
law.
24
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
and (c) The entropy generated during mixing, assuming ambient temperature of
25oC
.
3. RAOULT'S LAW
dg=RTd(lnP) (3.5)
The pressure has no considerable effect on the liquid phase; we will only consider
the vapor phase.
Integrating equation (3.4) from P to PSat
( )
sat
Pi
gi ( T , P )−gi ( T , P ) =RTln
V sat V
(3.6)
P
By equilibrium condition:
gVi ( T , P sat )=giL ( T , P )
( ) ( )
sat
yi Pi
RTln =RTln
xi P
sat
y i P=x i Pi (3.7)
For the determination of vapor pressure, appropriate correlations are used according
to the nature of the substance in question and the limitations of the correlation or
equation, for example:
Antoine's equation:
B
ln P Sat= A− ( 3 .7 )
t +C
It has limitations on the temperature where the coefficients are valid
25
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
0≤t ≤101° C and should not be used if PSat =1500 mmHg as the error
increases.
The Gómez-Nieto and Thodos equation has a very wide range of validity and can
be applied to estimate vapor pressures of polar, non-polar and associated
substances.
(*Leave the student to find out about other equations and correlations)
26
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
2 + X 1 ( P1 −P2 )
P=P sat sat sat
( 3 .8 )
X1 P
Y 1= ( 3 . 9)
P
Dado T , { Y 1 }
Calcular : P , { X 1 } P de rocío
X 1 composición de rocio 1
X 1 + X 2 =1
Y P Y P
X 1 = 1sat X 2= 2sat ( 3 .10 )
P1 P2
1
P= ( 3. 11 )
Y1 Y2
+
P1sat P2sat
Dado: P , { X 1 }
Calcular : T , { Y 1 }
P= X 1 Psat sat
1 + X 2 P2
Psat
1
Haciendo : α 12= (3 . 12)
Psat
2
P=P 2
sat
[
P
X2 + X1
P1sat
P2sat ] ( 3. 13 )
Psat sat
2 =P j = ( 3 .14 )
X 2 +α 12 X 1
B1
ln P1sat = A1 − ( 3. 15 )
t +C1
B2
ln P2sat = A 2− ( 3. 16 )
t +C 2
ln
( )
Psat
1
Psat
2
=( A1 − A2 )−
(
B1 B
− 2
t + C1 t +C2 )
( )
B1 B2
ln α 12=( A 1− A 2 ) − − ( 3 .17 )
t +C 1 t +C 2
Bi
t sar
i = −C i ( 3 .18 )
A i −ln Psat
j
The operational solution technique is:
t sat
1 + t2
sat
t 0=
1. Calculate 2 using equation (3.18)
2. Determine Pjsat, using equation (3.14)
α
3. It is determined 12 by equation (3.17)
4. With equation (3.18) t is calculated.
27
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
X 1 P1sat
Y 1=
P
Dado P , {Y 1 }
Calcular T , { X 1 } Punto de rocio
1
P= ( 3 .18 )
Y 1 Y2
+
P1sat P2sat
P sat
1
sat
Multiplying the second member of equation (3.18) by P 2 , we obtain:
1 = P [ Y 1 +Y 2 α 12 ]
Psat ( 3 . 19)
P sat
1
Donde : α 12=
P sat
2
Y1P
X 1= sat
P1
The iterative calculation procedure is the same as above except that it rotates
based on
Psat
1
AT CONSTANT TEMPERATURE
BUBBLE POINT
Dado : T y { X i }
Calcular : P y {Y i }
De la ecuación: Y i =X i Psat
i
∑ Y i P= ∑ X i Psat
i
i i
P=∑ X i Pisat , Donde: i =1, 2 , 3 , 4 , .. . n ( 3 .20 )
i
sat
X i Pi
Y i=
P
DEW POINT
Dado: T , {Y i }
Calcular : P , { X i }
De la ecuación: X i Pisat=Y i P
28
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
YiP
∑ Xi= ∑ Psat
=1
i i i
1
P= ( 3 .21 ) Yi P
∑ ( Y i / Pisat ) X i=
Pisat
I
AT CONSTANT PRESSURE
BUBBLE POINT
Dado : P , { X i }
Calcular : T , {Y i }
Pisat
Donde : α ij= ( 3. 22 )
P sat
J
P=
[∑ i
P
Xi
Pisat
PJsat ] . P sat
J
Psat
J = ( 3. 23 )
∑ X i α ij
i
De la ecuación ( 3. 17 )
( )
Bi Bj
ln ( α ij )=( A i− A j )− − ( 3 . 24 )
t + Ci t + C j
29
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Yi
j =P ∑
Psat ( 3 . 25)
α ij
Yi P
Xi=
Psat
i
The above procedure is similar to the previous one (bubble), using equation
(3.20)
Si hacemos : F=1
Z i=X i L+Y i V
Z i=X i L+Y i ( 1−L)
Y i =K i X i
Y i Psat i
ó = =K i
Xi P
Zi
X i=
L+ K i (1−L)
Zi K i
Y i=
L+V ( K i −1)
∑ X i=1 ∑ Y i=1
30
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
ISSUES
1) Prepare a diagram P− { X } , {Y } , for a temperature of 90°C and a diagram
T −{ X } , { Y } , for a pressure of 90 KPa, assuming that Raoult's law is valid
for the following systems:
Benzene (1) / ethylbenzene (2) and
1-chlorobutane (1) / Chlorobenzene (2).
From the tables for the Antoine equation the parameters are:
SUBSTANC TO B C
E
Benzene 13.8594 2773.78 220.07
Ethylbenzene 14.0025 3279.47 213.20
1-clobutane 13.9600 2826.26 224.10
Chlorobenze 13.9926 3295.12 217.55
ne
Para t=90 °C
Psat [
1 =exp 13 . 8594−
2773 .78
90+220 . 07 ]
=136 . 148 KPa
Psat
[
2 =exp 14 .0025−
3279 . 47
90+213 . 20 ]
=24 . 20 KPa
2 + ( P 1 −P2 ) X 1
P=P sat sat sat
P( X )=24 . 20+111 . 95 X 1
1
tabulando P ( X 1 ) X 1 =0 . 0 , 0 .2 , .. . ,1 . 0
P= X 1 Psat sat
1 + X 2 P2
X i1 Psat i
Y ( X1 ) =
P= X 1 Psat sat
1 +(1−X 1 ) P2
P i ( Xi )
31
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Cálculo a T = 90°C
CALCULO A T= 90°C
160
140
120
PRESION (kPa)
100
80
60
Las composiciones x e y se
40 refieren a x1 e y1
respectivamente.
20
0
0.00 0.20 0.40 0.60 0.80 1.00
COMPOSICION
32
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
P = 90 kPa
140
130
120
Tem peratura
110
100
90
80
70
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
com posicion
t1 P1 (t1) P2 (t2) X1 Y1
131.917 395.05 90.00 0.0000 0.000
121.00 307.05 66.02 0.0995 0.339
2. In the 112.00 246.16 50.40 0.2023 0.553 previous
problem, 103.00 195.27 37.71 0.3320 0.720
94.00 152.63 27.94 0.4980 0.844
85.00 117.53 20.29 0.7170 0.936
76.293 90.00 14.59 1.0000 1.000
determine the bubble point and dew point in the following cases:
to). t = 90oC, x1=0.50
t = 90oC, y1=0.50
SOLUTION
a ) Dado T =90° C y { X 1 }=0 . 50 P y {Y 1 }
, calculate
From the previous problem:
33
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Psat
1 =136 . 148 KPa
Psat
2 =24 . 20 KPa
P=P sat sat sat
2 +(P 1 −P 2 )X 1
P=24 .20+111. 95×0 . 50
P=80. 175 KPa Punto de burbuja
X 1 P1sat 0. 50×136. 148
Y 1= =
P 80. 175
Y 1 =0 . 849
This means that at 90°C a liquid mixture of 0.50 mol of benzene and 0.450 mol
of ethylbenzene, in the vapor phase, contains 0.849 mol of benzene.
SOLUTION
Bi
t sat
i = −C i
With the equation: A i−ln P determine
t sat o
1 =76 .29 C y t2sat =131 . 917o C
The sequence of operations is as follows:
sat sat
t + t2
1. t 0= 1 o
=104.104 C
2
[
2. α 12=exp ( A 1−A 2 )−
B1
+
B2
C 1+t C 2+ t ]
=5.104
sat P
3. P2 =P j= =29.567 kPadonde : j=2
x 2+ α 12 x1
sat B2 o
4. t 2 =t n+1 = −C 2=95.67 C
A 2−lnP
34
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
SOLUTION
Bi
t sat
i = −C i
With the equation: A i− ln P determine
t sat o
1 =76 .29 C y t2sat =131 . 917o C
The sequence of operations is as follows:
sat sat
t + t2
1. t 0= 1 o
=104.104 C
2
2. α 12=exp ( A 1−A 2 )− [ B1
+
B2
C 1+t C 2+ t ]
=5.104
sat B2 o
4. t 2 =t n+1 = −C 2=116.42 C
A 2−lnP
5. Si,|t n−t n+1|≠ 0 , entonces , entonces volver al (2)
y1 P 0.50 ×90
x 1= sat
= =0.1714 , es la composicion de Rocio
P 1
263.47
PROBLEM
In the system water (1), benzene (2), Chlorobenzene (3), the vapor pressure is
given:
35
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
3799 . 89
ln P1sat =16 . 2620− (1 )
t +226 . 35
2773 .78
ln P2sat =13 . 8594− (2)
t+220 . 07
3295. 12
ln P3sat =13 . 9926− (3 )
t+217 . 55
Determine:
V j, X j, Y j
SOLUTION
a) Using equation (1), (2), (3) determine the vapor pressures.
Psat
1 =70 .129 KPa
Psat
2 =136 . 148 KPa
Psat
3 =26 . 536 KPa
P= X 1 Psat sat sat
1 + X 2 P2 + X 3 P3 =82 . 40 KPa
X 1 P1sat X 2 Psat
2 X 3 P sat
3
Y 1= , Y 2= , Y 3=
P P P
Y 1 =0 .1277 Y 2 =0 .7435 Y 3 =0 . 1288
Yo Psat
1 / KPa . Y i / Pisat
1 143.25 1.6754x10-3
2 234.109 1.1106x10-3
3 51.045 9.7953x10-3
( )
Yi
∑ Pi
=0 .0125766
i
36
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
1
P=
( )
Yi
∑ Pisat
i
t , {Y i } ,
c) Calculate : for P=85KPa: X1=0.32, X2=0.47, X3=0.21
B
t ( ° C )= i −C i
A i−ln P
P=P1sat =P sat
2 =P 3
sat
en ELV
Yo t sat
i (° C )
Xi ti
1 95.15 30.448
2 74.49 35.010
3 127.49 26.773
t 0 =exp ∑ X i t i=92. 230 ° C
1st ITERATION
[
α ij=exp ( Ai − A j ) −
(
Bi
−
Bj
t +Ci t +C j )]
ij α ij Xi X i α ij
13 2.6612 0.32 0.8516
23 5.0676 0.47 2.3799
33 1.0000 0.21 0.2100
∑ X i α ij=3 . 4415
i
sat sat P 85
P3 =P j = = =24 . 7 KPa
∑ X i αij 3 . 4415
3295 .12
t1= −217 . 7 °C
13 .9926−ln24 .7
t 1=87 .96 ° C (1)
2nd ITERATION
ij α ij Xi X i α ij
13 2.6220 0.32 0.8390
23 5.2083 0.47 2.4479
33 1.0000 0.21 0.2100
37
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
∑ X i α ij=3 . 4969
i
Psat
3 =24 . 3 KPa
t 1=87. 49° C
t 2≠t 1
3rd ITERATION
ij α ij Xi X i α ij
13 2.6220 0.32 0.8390
23 5.2083 0.47 2.4479
33 1.0000 0.21 0.2100
Psat sat
3 =24 . 3 KPa=P j
t 1=87. 49° C=t 2
t=87 . 49 ° C
P = 85kPa
X i P sat
Yo Xi
α ij×P sat sat
j =P i Y i=
i
P
1 0.32 63.7146 0.24
2 0.47 126.5617 0.70
3 0.21 24.300 0.06
∑ Y i=1 .00
i
d) Calculate
t , { X i } , dado : P=90 KPa ; Y 1 =0 .54 Y 2=0. 15 Y 3 =0 .31
Yo Yi t sat
i Y i t sat
i
1 0.54 96.71 52.222
2 0.15 76.27 11.443
3 0.31 129.57 40.166
t 0 =∑ Y i t i =103 . 83° C
Bi
t sat
i = −C i
A i−ln P
P=90 KPa , t 0 =103 .83 ° C
ij α ij Y i / α ij
13 2.7563 0.1959
23 4.7405 0.0316
33 1.0000 0.3100
38
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
∑ ( Y i /α ij ) =0 .5375
[
α ij= exp ( Ai − A j ) −
2nd ITERATION
(
Bi
t +Ci
−
Bj
t +C j )]
ij α ij Y i / α ij
13 2.792 0.1934
23 4.629 0.0324
33 1.0000 0.3100
∑ ( Y i / α ij ) =0 .5358
j =P ∑ ( Y i /α ij )
Psat
Psatj =90×0 .5358=48 . 32 KPa
t j =t 2=108 . 16≈t 1
t=108 .16 ° C j=3
Y1P 0 .549×90
X 1= = =0 .36
α 13 P3sat 2. 792×48. 38
Y2P 0 .15×90
X 2= sat
= =0 . 06
α 23 P 3 4 . 629×48 . 38
Y3P 0 .31×90
X 3= = =0. 58
α 33 P sat
3
1. 00×48 . 38
Pb =∑ X i P sat
1 =80 .09 KPa
1
Pr = =62 .33 KPa.
( )
Yi
∑ P1sat
Pr < P< Pb si hay flasheo : 62. 33<80 <80 . 09
39
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Psat
i
K i=
P
K 1 =0 . 8766
K 2 =1. 7018
K 3 =0 . 3320
Zi K i Zi
X 1= Y 1=
V ( K i −1 ) +1 V ( K i −1 ) +1
n Z i ( K i −1 )
∑V =0
i ( K i −1 ) +1
Z ( K +1 )
n n
Z i ( K i +1 )2
f (v )=∑ i i f ( v )=−∑
'
i V ( K i +1)+1 i ( V ( K i +1 )+1 )2
'
f (v )+f (v ) ΔV =0 f (v )
V n+1 =V n − Método de Newton
ΔV =V n+1 −V n f '( v )
V 0 =0
a
lnPr sat =
Tr
[ 1−Tr 2 + B ( 3+Tr ) ( 1−Tr )3 ]
WAGNER EQUATION
Aτ + Bτ 1. 5 +Cτ 3 + Dτ 6
lnPr sat =
Tr
Donde : τ =1−Tr
FROST-KALWARF-THODOS EQUATION
B DP sat
lnPr sat = A− + C ln T +
T T2
40
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
LEE-KESLER EQUATION
It is based on the generalized correlation of Pitzer et al.
lnPr sat =f ∘ (Tr )+W f ' (Tr )
6 . 09648
f ∘(Tr )=5. 97214− −1. 28862 ln Tr +0 .169347 Tr 6
Tr
15 . 6875
f ' (Tr )=15 . 2518− −13 . 4721 ln Tr +0 . 43577 Tr 6
Tr
15 . 6875
β=15 . 2518− −13 . 4721 ln(T br )+0 . 43577 T 6
T br br
41
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
The terms Qij in the calculations take into account the way in which substances interact
with each other, it is necessary to differentiate the ways of calculating Qij
Qi +Q j c
Qij = equivale a Q m=∑ y i⋅Qi ⋯( 4 . 2 )
2 j
[∑ √ ]
c 2
42
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
K ij⋅( Qi +Q j )
Qij = ⋯( 4 . 4 )
2
The parameters of Kii, Kij, are weighted through regression of experimental data, or other
ways in ELV.
Qij =K ij⋅√ Qi +Q j ( K ii =1 )
( 1−K ij )⋅( Q i +Q j )
Qij =
2
( K ii =0 )
Qij =( 1−K ij )⋅√ Qi +Q j ( K ii =0 )
The virial equation truncated in two terms can be used for moderate conditions and
when the substances involved are not very polar or associate with each other.
Since the individual coefficients BK are a function of TCk, PCk and ω k, the binary
coefficients Bjk can be calculated; this requires binary pseudo-critical values.
[ ]}
3
V 1 +V 1
3 3
C C ¿
√
i j
T C =( 1−K ij )⋅ T C ⋅T C VC = ¿ ¿ ⋯( 4 .6 ) ¿
ij i j ij 2
43
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
For molecules that do not differ much from each other in size or chemical structure, the
binary interaction parameters can be considered null, such as: hydrocarbons, rare gases,
permanent gases, carbon monoxide, perhalocarbons, the following relationship can be
used:
K ij =1−
√
8⋅ V C ⋅V C
i j
⋯( 4 . 7)
( )
3
V 1 +V 1
C3 C3
i j
The equations of two constants are treated separately, since the mixing rules that
correspond to it are (P – R, R – K, VDW YS – R – K) the following relationships can be
calculated:
These relations (4.8) are valid for the cubic equations mentioned above.
In phase equilibrium calculations, chemical potentials are used, alternatively the concept
of fugacity is introduced which takes the place of μi.
The relationship of the Gibas equation to constant T is known
d g idi = R T d ( ln P ) ⋯ ( 4 . 10 )
Whose integration is:
gid
i = βi ( T ) +R T ln P ⋯( 4 .11 )
Where:
βi(T) integration constant as a function of T
give indicates ideal gas
The concept of fugacity lies in equation (4.10), an equation valid only for pure
substances i in the ideal gas state.
For a real fluid an analogous equation is written:
gi =β i ( T ) +R T ln f i ⋯ ( 4 . 12 )
Subtracting equation (2) less (3):
()
gi -g idi = R T ln i
f
P
⋯ ( 4 . 13 )
It is necessary to define the concept of “residual properties” which is given by:
m iR =m i−mid i
By analogy
giR=gi -g id i ⋯( 4 .14 )
44
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
gi -g id
i = R T ln ()
fi
P
giR= R T ln ( φi ) ⋯( 4 . 15 )
giR
ln ( φi )=
RT
fi
φ i= ⋯( 4 .16 )
P
Equation (7) expresses the fugacity coefficient
fi = fugacity of species i
The fugacity of the ideal gas state of a pure substance i is equal to its pressure
f gi
i =P
φ i=exp
BP
RT ( ) ⋯(4 .19 )
2. Using the general equation of state
Doing
PV
Z=
RT
Pr
dPr
ln φ i=∫ ( Z i −1 ) ⋯( 4 . 21 )
0 Pr
°
Where the integration is at constant Tr and using the equation Z=Z +ωZ ' , we
obtain:
Pr Pr
dPr dPr
ln φ i=∫ ( Z −1 ) +ω ∫ Z'
°
⋯ ( 4 . 22 )
0 P r 0 P r
For simplicity this last equation can be written:
ln φ i=ln φ °+ωln φ ' ⋯( 4 . 23 )
Where:
Pr
dP r
ln φ =∫ ( Z −1 )
° °
⋯ ( 4 . 24 )
0 Pr
Pr
dP r
ln φ '=∫ Z ' ⋯ ( 4 . 25 )
0 Pr
φ=( φ ° ) ( φ ' ) ω ⋯ ( 4 . 26 )
For evaluation there are tables or graphs such as tables E – 13 to E – 16 of Van
Ness – Abott. (5th. Edition)
From the Pitzer/Abott correlation, from equation (4.18), we have the following:
BP BP c Pr
( Z-1 )= =( )
RT RT c T r
BP c
=B0 +ωB 1
RT c
Pr
i
ln φ i= ( Bi0 +ωB 1i )
T ri
Equation (2) defining the fugacity of pure component i, can be written for substances i
as a saturated vapor:
V
gV
i = βi ( T ) +R T ln f
i
⋯ ( 4 . 27 )
For saturated liquid
L
giL= β i ( T )+ R T ln f i
⋯ ( 4 . 28 )
V
i
V
i
L f
g -g i = R T ln L
i
f
According to the equilibrium condition giV = giL then:
V L Sat
f i= f i = f i
⋯ ( 4 . 29 )
46
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Sat
i
Sat
i f
φ = Sat
⋯( 4 .30 )
i
P
By equilibrium condition:
V L Sat
φ i=φ i=φ i
⋯ ( 4 . 31 )
From equations (19) and (20):
L Sat Sat Sat
f i= f i
=φ i
P i
⋯( 4 .32 )
For isothermal change of state from saturated liquid to compressed liquid at a pressure
P, a new relation can be obtained:
dG=Vd P-S dT
P
i = ∫ V i dP
gi -g sat ⋯ ( 4 . 33 )
Sat
i
P
gi =β i ( T ) +R T ln f i ⋯ ( 4 . 34 )
Sat
gsat
i =βi (T )+ R T ln f i
⋯( 4 .35 )
Equation (3) is doubled for gi and gisat by subtracting the two equations we have:
fi
gi -g sat
i =RT ln Sat
⋯ ( 4 . 36 )
i
f
Equating the expressions gi and gisat (equations (23) and (24)) gives:
P
fi 1
ln Sat =
i
∫ V dP
RT Sati i
f P
Sat Sat Sat
i i i
f =φ P
V i ( P-P )
L Sat
fi i
ln Sat
= ⋯( 4 .37 )
f i RT
V i ( P-P )
L Sat
Sat Sat i
i i
f i=φ P exp ⋯( 4 .38 )
RT
FUGACITY PROBLEM
1. For a binary gas mixture, nitrogen (1), isobutane (2), whose composition in the
gas phase is: y1 = 0.35, y2 = 0.65, at a temperature of 150oC and a pressure of 60
bar. Determine: the molar volume of the mixture, the fugacity coefficient of each
of the pure components and the fugacity coefficient of component i of the
solution.
a) Considering as ideal behavior.
47
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
48
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
SOLUTION
a) Considering as ideal behavior.
b) Real behavior.
Using the Redlich-Kwong cubic equation, the Pitzer-Abott
correlation and the Lee/Kesler correlation. Assume for calculations
K ij =0.11
cc∗¯¿
R=83.14 ¿ , P=60 ,̄ T =150o C=423.15 K , y 1=0.35 y 2=0.65
mol∗K
K 12=0.11
[ ]
1 1 3
3 3
Tc12= √ Tc1 ×Tc 2 ( 1−K 12) =201.98 K
❑ Vc + Vc
1 2
Vc 12= =160.65 cc /mol
2
Zc 1 +Zc 2 Zc 12 R Tc12
Zc12= =0.2855 Pc12= =29.843 ¯
¿
2 Vc 12
49
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
The interaction parameter ofa ij=a12 ,donde aii =a jj , corresponds to the pure
component.
2 2.5
R Tc12
a 12=0.42748 =57 381 736.13
Pc 12
The RK parameters of the mixture are calculated as follows:
❑ ❑
a=∑ ∑ y 1 y 2 a12= y 1 a11 +2 y 1 y 2 a12 + y 2 a22=143 152921.1
2 2
i=1 j=1
❑
b=∑ y i bi= y 1 b1 + y 2 b2=61.7364
i=1
RT a
The Redlich-Kwong equation is: P= v−b − 0.5
T v ( v +b )
a' P bP a
A= =0.3373 B= =0.1053 , donde a '= 0.5
( RT ) 2
RT T
Z −Z + ( A−B−B ) Z− A × B=0
3 2 2
Z=0.7738
v=Z × v o=0.7738 × 586.35=453.72 cc /mol
Determination of the fugacity of each pureϕ i component, using the RK equation.
a 1=15 549101.96 b 1=26.7368
a 2=272519 446.6 b2=80.5824
a'1 P b1 P a
A 1= 2
=0.0366 B1= =0.0456 , donde a' = 0.5
( RT ) RT T
a'2 P b2 P a
A 2= 2
=0.6422 B2= =0.1374 , donde a' = 0.5
( RT ) RT T
Zi −Z i + ( A i−Bi−Bi ) Z i− A i × Bi =0
3 2 2
Z1 =1.01257 Z 2=0.3356
[
ϕ i=exp Z−1−ln ( Z−B )−
A
B
ln (
Z+B
Z )]
ϕ 1=1.011 ϕ2 =0.522
Calculation of the fugacity coefficient of component i of the gas mixtureϕ^ i
RK parameters of the mixture
a=143 152 921.1 A=0.3373
b=61.7364 B=0.1053
Z=0.7738
RK parameters of pure components
a 1=15 549101.96 b 1=26.7368
a 2=272519 446.6 b2=80.5824
With this data we replace in the equation:
[ (
A 2 √ ai bi
)] ( )
❑
bi Z +B
ϕ^ i=exp ( Z−1 ) −ln ( Z−B )− − ln
b B √a b
❑
Z
ϕ^ 1=1.2366 ϕ^ 2 =0.6145
50
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
0 1
B2=−0.3152 B2=−0.00866
Calculation of the second virial coefficient Bij =B 12 y B1 , B 2
R Tc12 0
B12=
Pc 12
( B12 +ω 12 B 12) =−17.9581
1
i=1 j=1
BP
Z=1+ =0.7755
RT
v=Z v o=454.73 cc /mol is the molar volume of the mixture.
Calculation of fugacity coefficient of pure components:ϕ 1 y ϕ2
ϕ 1=exp
[Pr 1 0
Tr 1
( ]
B1 +ω 1 B1 ) =1.0145
1
ϕ 2=exp
[Pr 2 0
]
( B + ω B1 ) =0.605
Tr 2 2 2 2
Calculation of the fugacity coefficient of components i of the solution or mixture.
δ 12=2 B12−B11 −B 22=250.2667 donde :δ ii =δ i
ϕ^ 1=exp
[P
RT
( ]
B11 + y 22 δ 12 ) =1.2175
ϕ^ 2=exp
[P
RT
( ]
B22+ y 21 δ 12) = 0.6377
0 1
Z1 Z1
Pr Pr
51
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
0 1
ϕ1 ϕ1
Pr Pr
Tr 1.500 1.765 2.000 1.500 1.765 2.000
3.000 1.0069 1.0116 1.0889 1.1194
3.352 1.0104 1.0127 1.0151 1.0839 1.0978 1.1117
3.500 1.0139 1.0186 1.0789 1.1041
0 1
Z2 Z2
Pr Pr
Tr 1.500 1.645 2.000 1.500 1.645
2.000
- -
1.020 0.2715 0.3297 0.0524 0.0722
- -
1.037 0.2923 0.3148 0.3374 0.0038 -0.0307 0.0577
-
1.050 0.3131 0.3452 0.0451 0.0432
0 1
ϕ2 ϕ2
Pr Pr
Tr 1.500 1.645 2.000 1.500 1.645 2.000
1.020 0.5224 0.4266 0.9594 0.9419
1.037 0.5476 0.4982 0.4488 0.989 0.984 0.979
1.050 0.5728 0.471 1.0186 1.0162
0 1
Zi =Z i +ω i Z i
Z1 =1.018 Z 2=0.3092
v i=Z i v 1
v 1=596.90 cc /mol v 2=181.30 cc /mol
52
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
1 ωi
ϕ i=( ϕ i )( ϕi )
0
ϕ 1=1.0163 ϕ2=0.4967
This correlation is only useful for predicting the fugacity coefficient of the pure
components, but in any case it must be very close to the fugacity coefficients of the
components i of the solution. In some applications it can be very useful with the
limitations of the case.
1. Estimate the fugacity of liquid 1-Butene at its normal boiling point temperature
and 150 Bar.
Solution
Tc = 420.0 K
Pc = 40.43 bar
Zc = 0.277
Vc = 239.3 cc/mol
R = 83.14 cc-bar/mol-K Tb = 266.9 K at PSat = 1.01325 bar
ω = 0.191
P = 150 bar
PSat Tb
Pr = =0 . 0251 T r= =0 .6355
Pc Tc
φ Sat =exp
Pr
Tr [
( B °+ ω B' )
0 . 422
] 0 .172
B °= 0 .083- =−0 . 788621 B'=0. 139- =−1 . 015631
T 1. 6 T 4. 2
r r
Sat
φ =0 . 961934
V i ( P-P )
L Sat
Sat Sat i
i i
f i=φ P exp
RT
fi = 1.80075 bar
2. For SO2 at 600 K and 300 Bar, determine a good estimate of the fugacity
and gR/RT.
Solution
T=600K P=300bar
53
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
T P
T r= =1 . 393 Pr = =3 . 805
Tc Pc
Using the equation:
Fig 3.15 Page. 102 5th Ed. Van Ness or Table E – 15 and E – 16 Page. 756 and
757 Van Ness 5th Ed.
φ=( φ ° ) ( φ ' ) ω
φ º = 0.672φ ' = 1.354 φ=( 0 . 672 )( 1 .354 )0 . 245=0 . 724
f i=φi Pi=217 . 14 bar
g Ri
=−0 . 323
RT
3. For methane, ethane, and propane, determine the fugacity and fugacity
coefficient for P = 35 bar and T 0 373.15 K.
Redlich-Kwong equation
RT a
P= − ⋯( 1 )
v−b v ( v+b )
Where:
R 2⋅T 2 .5
c
a=0 . 42748 0.5
Pc⋅T
R⋅T c
b=0 . 08664
Pc
Solution
dv
ln φ i=( Z−1 )−ln Z +ln v−∫ Z
v
ln φ i=( Z−1 )−ln Z +ln v−∫
v
−
a
( dv
v−b RT ( v +b ) v )
ln φ i=( Z−1 )−ln Z +ln
v
( )
+
a
v−b RT b
ln
v
v −b ( ) ⋯( 2 )
f i= φ i P i ⋯( 3)
Data
54
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
(c) Propane
a = 9469496.265
b = 62.70625
v = 566.9129 cc/mol
Z = 0.639574
Replacing in (2φ ): = 0.735709
¿
Replacing in (3 f ): = 25.74983 bar
The relationships that describe for a component i in a mixture of gases or a solution of liquids,
with an equation analogous to that of ideal behavior.
¿
μi =β i ( T ) +R T ln f i ⋯ ( 4 . 37 )
[ ]
¿
f i ⇔ X i P reemplaza ⋯ ( 4.38 )
Where:
55
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
[ ] [ ] [ ] ∂ ( ng i )
g
∂ ( ng R ) ∂ ( ng )
= − ⋯ ( 4 . 43 )
∂n i T , P , nj ∂n i T , P, n ∂ ni T , P ,n
j j
giR=gi −gidi ⋯ ( 4 . 44 )
56
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
¿
φ i Expresses the fugacity coefficient of component i in solution. How similar it is φ i with gR for
¿g
ideal ḡ =0 gas, and φ =1
R ii
gi
Where M molar value or unit mass of the thermodynamic property of a fluid and M (ideal) aty
P from which gives:
R
i
m̄ =m̄ i− m̄iid
Whose definition expresses equation (6) and (7), in addition:
d ( ng )=( nv ) d P- ( ns ) dT + ∑ μi dn i (α )
i
μi =ḡ i ' (β)
d ( )
ng
=
RT RT
1 ng
d ( ng )− 2 d T
RT
⋯( 4 . 50 )
( )
g g g ḡ i
ng i nv i nh i g
d = d P- 2 dT + ∑ i dni ⋯ ( 4 . 52 )
RT RT RT i RT
Subtracting equation (4.51) and (4.52)
ḡ R
d
RT( )
ng R nv R
=
RT
nh R
d P- 2 dT + ∑
RT i RT
i
dn i ⋯( 4 . 53 )
( )
ng R nv R nh R ¿
d = d P- 2 dT + ∑ ln φ i dni ⋯ ( 4 . 54 )
RT RT RT i
Dividing equation (17) and (18) at constant T and constant composition
[ ]
v ∂ ( g /RT )
R R
= T = Cte ⋯( 4.55)
[ ]
RT ∂P T,X ∂ (ngR /RT )
[ ]
= ⋯(4 .57 ) ¿
hR ∂ ( gR /RT ) ∂n
= P = Cte ⋯( 4.56) i P,T,n j
RT ∂T P,X
ln {^φ i
57
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
[ ]
R
∂ ln { φ^ i i
¿ = v̄ ⋯ ( 4 . 58 )
∂P T , X RT
[ ∂ ln { φ^ i
∂T
¿
] P, X
=
h̄ R
RT 2
⋯( 4 .59 )
Then:
gR
=∑ X i ln { φ^ i ⋯( 4 . 60 ) ¿
RT
The Gibbs/Duhem equation expresses the derivative of equation (24):
∑ X i d ln { φ^ i =0 (T y P constantes )¿
i
APPLICATION EXAMPLE:
DETERMINATION OF
φ^ i IN GAS MIXTURE; WITH THE VIRIAL EQUATION:
BP
Z=1+ ⋯( 1 )
RT
B=∑ ∑ Y i Y j Bij ⋯( 2 )
i j
For a binary mixture i = 1, 2 and J = 1, 2, then equation (2):
B=Y 2 B11 +2Y 1 Y 2 B12 +Y 2 B 22 ⋯( 3 )
i 2
In equation (1):
n BP
nZ=n+ ⋯( 4 )
RT
Differentiating with respect to n1:
Z̄i =
[ ] ∂ ( nZ )
∂ n1 P , T , n2
=1+
[ ]
P ∂ ( nB )
RT ∂n1 T ,n2
⋯( 5 )
An expression
φ^ i for n moles of a mixture from the compressibility factor data is:
RP P
ng dP dP
ln {^φi= =∫(nZ-n) ⋯(6) ¿ln {^φ¿i=∫ (nZ-n) ⋯( 7) ¿ ¿
RT 0 P 0 P
Differentiating equation (7) with respect to ni, holding P,T constant, nj constant:
[ ]
P
∂ ( nZ-n ) dP
ln { φ^ i=∫ ⋯( 8 ) ¿
0 ∂ni P,T ,nj P
Doing:
58
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Z̄=
[] ∂ ( nZ )
∂ni P ,T ,nj
⋯(9)
P
=∫ (Z̄i−1)
dP
⋯( 11 ) ¿
∂n P
=1 ⋯( 10 ) 0
∂ni
ln { φ^ i
From (5) and (11):
[ ] [ ]
P
1 ∂ ( nB ) P ∂ ( nB )
ln { φ^ i= ∫
RT 0 ∂ ni
dP =
RT ∂ n1
⋯( 12 ) ¿
T , n2 T,n2
[ ]
∂ ( nB )
∂n1 T , n 2
1 n
=B11 + − 1 n2 δ 12
n n2
∂ ( nB )
∂ n1 ( ) [ ]T ,n
2
=B 11 + ( 1−Y 1 ) Y 2 δ 12 =B 11 +Y 2 δ 12
2
Then:
P P
^ln { φ1= (B11+Y 2δ12) (⋯ 13) ¿ ln {φ^ ¿2= (B22+Y 2δ12) ⋯ ( 14 ) ¿ ¿
RT 2 RT 1
Generalizing:
[ ]
P 1
ln { φ^ i= BKK+ ∑ ∑ (2δiK−δij) ¿δiK=2BiK−Bi −BKK ¿δij=2Bij−Bi −Bj ¿¿
Where:
RT 2 i j
δ ii=0 δ jj =0 δ iK =δ Ki
For calculations: RT c
ij
Bij=
Pc ( Bº +ω ij B ' ) ⋯( 15 )
ij
ωi +ω 2
ω ij= ⋯( 16 )
2
1
T c = T c 59
ij i
Tc
j ( )
2
( 1−K ij ) ⋯( 17 )
RT c
ij
Pc =Z c ⋯ (18 )
ij ij V c
ij
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
ZC + ZC
i j
Zij = ⋯ (19 )
2
[ ]
3
V 1 +V 1
3 3
c c
i j
Vc = ⋯( 20 )
ij 2
PROBLEM
^ ^
For the ethylene (1) / propylene (2) system as a gas, estimate f 1 , f 2 , φ^ 1 , φ^ 2 T = 150ºC, P = 30 bar
and Y1 = 0.35
a. By applying equations (8) and (9)
b. Assuming the mixture is an ideal solution.
Solution (a)
Tc Pc
ij ij
( ºK )
ij
( bar )
Vc
ij ( mol
cc
) ω ij Tr
ij
Bº B' B
cc
δ 12=2 B12− B11 − B22=20 . 96
mol
0. 422 0 .172
Bºij =0 . 083− B ' ij =0 .139−
T 1. 6 T 4. 2
r r
ij ij
RT c
ij
Bij=
Pc ( Bº +ω ij B ' )
ij
P
Pr = =3 . 805
Pc
( )
Pr
k
φ^ i=exp
Tr ( Bº kk +ω kk B ' kk )
k ,k
60
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
φ^ 1=0. 950 { ^f id=28. 508 bar¿φ^2=0. 875 { f¿^ id=26. 188 bar¿¿
1 2
FUGACITY PROBLEM
^ ^ ^
For the system: methane (1), ethane (2), propane (3), as a gas determine f 1 , f 2 , f 3 φ^ 1 , φ^ 2 , φ^ 3 at ;
temperature of 100ºC, pressure of 35 bar for Y1 = 0.21, Y2 =0.43
( mol )
Tc Pc cc
Substance Yi ω ij Zij i i Vc
( ºK ) ( bar ) i
Tc Pc
ij ij
( ºK )
ij
( bar )
Vc
ij ( mol
cc
) Zc
ij
ω ij Tr
ij
[ ]
3
V 1 +V 1
c
3
c
3 RT c
i j ij T
Vc = Pc = Z c Tr =
ij 2 ij ij V c ij Tc
ij ij
Pitzer/Abott coefficient calculations:
0. 422 RT c
Bºij =0 . 083− ij
T 1. 6
r
Bij=
Pc ( Bº +ω ij B ' )
ij
ij
0 .172 δ ij=2 Bij−Bii −B jj
B' ij=0. 139−
T 4.2
r
ij
φ^ i=exp
P
RT
1
{ [
BKK + ∑ ∑ Y i Y j ( 2 δ ik −δ ij )
2 i j ]}
1
k=1 ∑ ∑ Y Y (2δ −δ )
2 i j i j ik ij
1
⋅¿ {Y Y (2 δ −δ )+Y Y (2 δ −δ )+Y Y (2 δ −δ )+ ¿ }{Y Y (2 δ −δ )+Y Y ( 2 δ −δ )+Y Y (2 δ −δ )+ ¿}¿ {}
2 1 2 11 11 1 2 11 12 1 3 11 13 2 1 21 21 2 2 21 22 2 3 21 23
{RTP [ B +Y
φ^ 1=exp 11
2
2 δ 12 +Y 2 Y 3 ( δ12 +δ 13−δ 23 ) + ] Y 32 δ 13 }
φ^ =exp { [ B +Y δ }
P
2
RT 22
1
2 δ 12+Y 1 Y 2 ( δ 12+δ23−δ13 ) + ] Y 32 23
φ^ =exp { [ B +Y δ }
P
3
RT 33 δ +Y 1 Y 2
12 13
( δ13 +δ 23−δ 12) + ] Y 22 23
^f =φ^ P
k k
( )
Pr
k
φ^ i =exp
dk Tr
( Bº kk + ωkk B ' kk )
k
^f = φ
^ k ⋅P
i
dk dk
( ) ng R nv R nh R ¿
d = d P- 2 dT + ∑ ln φ i dni ⋯( 1)
RT RT RT i
62
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
[ ] ( )
ng R
∂
( )
RT n ( Z-1 ) ∂ P
ln { φ^ i= − ⋯ (2 ) ¿
∂n i T , v,n j P ∂ni T , v ,n
Where:
PV R =( Z−1 ) RT=( Z id −Z ) RT
nZRT
P= ⋯ (3 )
nV
( )
∂P
∂n i T , V ,n j
=
[ ]
P ∂ ( nZ )
nZ ∂ ni
T ,V ,nj
⋯( 4 )
[ ] ( )
ng R
∂
ln { φ^ i=
RT
∂n i T , v,n j
− ( )[
Z−1 ∂ ( nZ )
Z ∂ni ] T , v ,n
⋯ (5 ) ¿
[ ]( )
gR
∂
[ ] [ ] [( ) ]
V
RT ∂ ( nZ ) ∂ ( ln Z ) ∂ nZ dV
= − −∫ −1 ⋯( 7 )
∂ ni T ,V ,n j ∂ni T ,V ,n ∂ ni T , V , nj ∞ ∂n i T ,V , n j V
j
Replacing this equation (7) in (5) and operating we have:
{[ ] }
V
∂ ( nZ ) dV
ln { φ^ i=∫ -1 −ln Z ⋯( 8 ) ¿
∞ ∂ ni T ,v,n V
b̄i
ln { φ^ i= ( Z −1 )−ln
b
( V −b ) Z a
V
63+
b RT
āi b̄ i
1+ − ln
a b
V +b ¿
V [ ]( )
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Where:
b=∑ Y i b i
i
1
a=∑ ∑ Y i Y j aij o a=( ai a j ) 2
i j
R2⋅T R⋅T c
c 2. 5
a=0 . 42748 0 .5
b=0. 08664
Pc⋅T Pc
ā i=
[ ]
∂ ( na )
∂ni T ,nj
b̄i =
[ ] ∂ ( nb )
∂ ni T ,n j
Generalizing:
Vi ai ( T )
Zi = −
V i−b i RT ( V i −εb i ) ( V i−σb i )
Where:
(
Ωa⋅α T r , ωi ⋅R 2⋅T
i ) c
2
i b i=
Ωb⋅R⋅T c
i
a i (T )= Pc
Pc
i i
For SRK:
[ ( √ )]
2
( i )
α T r , ωi = 1+ ( 0. 480+ 1. 574 ω i−0 . 176 ω 2 )⋅ 1− T c
i i
For Peng-Robison:
[ ( √ )]
2
( i )
α T r , ωi = 1+ ( 0. 37464+1 . 5226 ωi −0 .26992 ω 2 )⋅ 1− T c
i i
Then:
Equation SRK PR
ε 0 -0.414214
σ 1.0 2.414214
Ωa 0.42748 0.457235
Ωb 0.08664 0.077796
C 0.69315 0.62323
m R = m − mid
id
Where g , is the extensive thermodynamic property of the ideal gas.
E
A mathematical expression analogous to the residual property is the thermodynamic excess m
property ().
m E = m − mSi ( 5. 1 )
Where: If indicates ideal solution.
To study the ELV, the property of practical interest is the Gibbs free energy.
G = G − G ( a ) ¿} ¿¿ ( 5.2 ) ¿
E Si
E
WhereG : is called “excess Gibbs free energy”.
Deriving equation (5.2 b), with respect to i for constant nj at T and P.
[ ∂ ( ng E )
∂ni ] P, T , nj
=
∂ni [ ]
∂ ( ng )
P, T , n j
−[∂ ( ngSi )
∂ni ] P , T , nj
( 5 .3 )
ḡ E = ḡ i − ḡ Si .. .. . .. .. . .. .. ( 5 . 4 )
Similarly: i
Also:
d ḡi = RT d ( ln f^ i ) ( 5 .5 )
Integrating equation (5.5) from the initial state of component i to its solution state:
ḡi − ḡ id
i = RT ln ( )f^ i
fi
(5 . 6 )
( )
xi f i
ḡ Si − g i = RT ln
i fi
ḡ Si − g i = RT ln x i ( 5 .7 )
i
65
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
ḡi − ḡ
i Si = RT ln ( ) f^ i
xi f i
ḡ E = = RT ln
( )f^ i
xi f i
( 5. 8 )
Where: is defined as the activity coefficient of component i of the solution, expressed by the
following equation:
^
fi
γ i = (5. 9 )
xi f i
ḡ E = RT ln γ i
E
ḡ
ln γ i = ( 5. 10 )
RT
ḡ E
RT
=
∂ni [
∂ ( ng E /RT )
] P,T , ηj
[
∂ ( ng / RT )
]
E
ln γ i = donde n i ¿ n j ( 5. 11 )
∂ni P ,T , η j
E γ i =1
For an ideal ḡ =0 solution,
^
f = x i f i ( 5 . 12 )
i Si
Equation 5.12 represents an ideal solution relationship, and the Lewis/Randall rule is also known.
ni
= xi
Solving equation (5.11), dividing the second term by , then n .
gE
= ∑ x i ln γ i (5 . 13 )
RT
Deriving this equation:
x1
[ d ( ln γ i )
d x1 ] [ + x2
d ( ln γ 2 )
d x2 ] =0
66
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
E
Another way to express ḡ is from other relationships:
ḡi = β i ( T ) + RT ln f^ i
ḡ Si = β i ( T ) + RT ln x i f i
i
ḡi − ḡ Si = RT ln
i ( ) f^ i
xi f i
ḡ E = RT ln γ i
i
d ( n g ) = nv dP − ns dt
d
ng E
RT
= ( )
n vE
RT
n hE
d P − 2 dT + ∑ ln γ i dni ( 5 . 15 )
RT
For a practical application of equation (5.15)
[
∂ ( n gE /RT )
]
E
v (5.16)
=
RT ∂P T,x
[
∂ ( n g E / RT )
]
E
h (5.17)
=−T
RT ∂T P, x
ln γ i=
[∂ ( n g E / RT )
∂ ni ] P ,T ,nj
(5.18)
Where :
ln γ i is a partial property with respect toG E / RT , and then:
[ ]
∂ ( ln γ i ) v̄ E
i
= ( 5 .19 )
∂P T, x RT
[ ]
∂ ( ln γ i ) h̄ E
i
= ( 5. 20 )
∂T P, x RT 2
By analogy:
gE
= ∑ x i ln γ i ( Ecuación de Gibbs / Duhem )
RT
∑ x i d ( ln γ i ) = 0 P , T , cte
PROBLEM
The excess Gibbs energy of a binary liquid mixture at T and P is given by:
gE
= ( −2.6 x 1 − 1.8 x 2 ) x1 x 2
RT
For a given temperature and pressure:
67
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
∑ xi d ( ln γ i ) = 0
c) Show that these expressions satisfy the Gibbs/Duhem equation
( ) ( )
d ln γ 1 d ln γ 2
= =0
dx 1 x 1=1 dx 1 x =0
d) Prove that 1
gE
e) Plot a graph against X1 with the values of RT ln γ 1 y ln γ 2 , , calculated from the equation for
gE
RT and by the equations developed in (a), identify the points ln γ 1 ∞ y ln γ 2 ∞ and show their
values.
Solution:
a) We know that:
gE
= ( −2.6 x 1 − 1.8 x 2 ) x1 x 2
RT
gE
= (−2. 6 x 1 − 1 .8 ( 1−x 1 ) ) x 1 ( 1−x 1 )
RT
gE
= ( −0 .8 x 1 − 1 . 8 ) x 1 ( 1− x1 )
RT
gE
= −1.8 x 1 + x 2 + 0. 8 x 3
RT 1 1
From the equations:
d M d M
M̄ 1 = M + x 2 M̄ 2 = M x 1
d x1 dx 1
gE
d
gE RT
ln γ 1 = + ( 1−x 1 )
RT d x1
E
g
E d
g RT
ln γ 2 = + x1
RT d x1
but:
gE
d
RT
= −1 . 8 + 2 x 1 + 2 . 4 x 2
d x1 1
68
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Then:
ln γ 1 =−1.8 + 2 x 1 + 1.4 x 2 − 1.6 x 3
1 1
ln γ2 =−x 2 − 1.6 x 3
1 1
E
g
= ∑ x i ln γ 1
b) From the equation RT
gE
RT 1 (
=x −1.8 + 2x 1 + 1.4 x 2 − 1.6 x 3 ) + ( 1−x 1 ) (−x 2 − 1.6 x 3 )
1 1 1 1
then this equation is reversed to
∑ x i d ln γ i = 0
x 1 d ln γ 1 + x 2 d ln γ 2 = 0
Now we divide by dx1:
d ln γ 1
= 2+2.8 x 1− 4.8 x 2 ( 1 )
dx 1 1
d ln γ 2
= −2 x 1 − 4.8 x 2 ( 2 )
dx 1 1
d ln γ 1 ( b) ¿
x1 = 2 x 1 +2.8 x 2 − 4.8x 3 ( a )
dx 1 1 1
¿
x2
d ln γ 2
dx 1
= ( 1−x1 ) (−2x 1 − 4 .8 x 2 ) ¿ ¿
1 }
d ln γ 1
=0
d) For x1 = 1 in the ec (1) dx 1
d ln γ 2
=0
For x1 = 0 in Ec (2) dx 1
e) We know that:
69
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
gE
=−1 .8 x 1 + x 2 + 0. 8 x 3
RT 1 1
ln γ 1 = −1 . 8 + 2 x 1 + 1 . 4 x 2 − 1 . 6 x
1 13
ln γ 2 =−x 2 − 1 .6 x
1 13
ln γ 1 ∞ ( 0 ) = −1 .8 ln γ 2 ∞ ( 1 ) = −2. 6
70
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
For the i components of a vapor mixture the fugacity can be expressed as follows:
^f v = y φ ^ i P ( 6 .1 )
i i
^f L = y φ
i i ^ i P ( 6 .2 )
In liquid/vapor equilibrium:
^f L = f^ v
i i
For an ideal
φ i gas: = 1, then equation (7.2) will be:
^f = y P
i i
P Sat
In the limit where xi = yi = 1, the total pressure is equal to i
^f L = f^ iv = P Sat
i i
For the VAPOR phase, the fugacity of the components i are calculated from the fugacity
φ^ i
^
f vi
^
φ v = ( 6 .3 )
i yi P
For the liquid phase, the fugacity is calculated from the activity coefficient
^
fLi
γ i = (6 . 4)
xi f L
i
^f L = x γ f
i i i iL
^f L = f^ v
Applying the ELV criterion: i i
71
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
^
yi φ P
iv
γ i = ( 6 . 7)
Pi
V L
exp ∫P
i
x i φ^ Sat P Sat dP
i i i Sat RT
The evaluation of
γ i a binary system from the excess Gibbs free energy equation,
gE
= ∑ x i ln γ 1
RT (6.11 a)
for i = 1, 2
E
g
=x 1 ln γ 1 + x 2 ln γ 2 (6.11 b)
RT
To graph
ln γ 1 y ln γ 2 vs and x2, divide this equation by x1x2, you get a table for a given
x1
temperature (constant)
E
g g
E
P(kPi) xi yi ln γ 1 ln γ 2 RT RT x 1 x 2
P 0.00 0.00 - 0.00 0.00 -
2 Sat
gE gE
ln γ 1 , ln γ 2 , ,
The four thermodynamic functions for which we have experimental RT x 1 x 2 RT values
are properties of the liquid phase, where γ 1 ≥ 1 y ln γ 1 ≥ 0 , i = 1, 2
72
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Chart 6.1
From equation (6.11), as x1 0,
E
g
=0
RT
E
g
lim =0
x1 →0 RT
When x2 0, x1 = 1.
gE
The value of RT 0, then x1 = 0 and x1 = 1
gE
The magnitude of x1 x 2 RT becomes indeterminate for both x1= = 0 and x1 = 1 because in both limits gE
= 0, as x1.x2 = 0.
For x1 0, using L'Hospital's Rule
( )
E E
g g
E
d
g RT RT
lim = lim = lim (a )
x1 →0 x 1 x 2 RT x1 →0 x 1 x1 →0 d x1
lim
d ( )
gE
RT
The value of x1 →0
d x 1 can be obtained by deriving equation (6.11 b) between dx1
E
g
=x 1 ln γ 1 + x 2 ln γ 2
RT
73
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
You get:
d ( )
gE
RT
= x1
d ln γ 1
+ ln γ 1 + x 2
d ln γ 2
−ln γ 2 ( b )
dx 1 dx1 dx 1
Where x 1 + x 2 = 1 : and
d x2
= −1
d x1 To justify the negative sign of the derivative of the equation
From the Gibbs/Duhem equation
∑ x i d ln γ i = 0
x 1 d ln γ 1 + x 2 d ln γ 2 = 0
For a binary system dividing this equation by dx1 gives:
d ln γ 1 d ln γ 2
x1 + x2 =0
dx 1 dx 1 a constant P and T (6.12)
The activity coefficients for the liquid phases at low pressure are almost independent of P, so
combining equation (b) and (7.10) gives:
d
gE
RT( )
= ln
γ1
dx 1 γ2
in the limit, as x1 0, x2 1, then
lim
d ( )
gE
RT γ1
= lim ln = ln γ 1 ∞
x1 →0 dx 1 x 1 →0 γ2
From equation (a):
E
g
lim = ln γ 1 ∞
x1 →0 x1 x 2 RT
In analogous form: x1 0, x2 0
gE gE
lim = ln γ 2 ∞
x1 →1 x 1 x 2 RT
. Where the values of x1 x 2 RT : are equal at the limits of dilution
infinite ln γ 1 , ln γ 2 .
The Gibbs/Duhem equation can be expressed as follows;
74
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
dln γ 1 −x 2 dln γ 2
= (6.13)
d x1 x1 d x1
The equations for and are derived from this last equation by applying the equation:
ln γ
[ ] ( ngRT )
E
∂ (6.15)
i=¿ ¿
∂ ni P,T , nj
[ ]
E
g n 1 n2
=(A 21 x 1 + A12 x 2 ) 2
x1 x 2 RT ( n 1+ n2 )
Multiplying both sides of the above equation and differentiating with respect to n1:
ln γ
[ ] ( ngRT )
E
[ ]
∂
1=¿
∂ n1 P, T , n2
=n2 ( A 21 x1 + A12 x 2 )
[ 1
( n1 +n2)
2
−
2 n1
( n1 +n2)
3
]
+
n1 A21
( n1+n2)
2
¿
Reconverting n1 to x1
Making x2 = 1 – x1
In an analogous way, the same is obtained for component 2. These are the equations of Max Margules
(1856 – 1920), Austrian meteorologist and physicist.
For limiting conclusions:
75
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
With Margules's conclusions for and one can easily construct a correlation of the original
data set.
The addition:
P(kPa) xi yi P(kPa) xi yi
19.9530 0.0000 0.0000 60.6140 0.5282 0.8085
39.2230 0.1686 0.5714 63.9980 0.6044 0.8383
42.9840 0.2167 0.6268 67.9240 0.6804 0.8733
48.8520 0.3039 0.6943 70.2290 0.7255 0.8922
52.7840 0.3681 0.7345 72.8320 0.7776 0.9141
56.6520 0.4461 0.7742 84.5620 1.0000 1.0000
Doing:
76
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
gE
= x 1 ln γ 1 + x 2 ln γ 2
RT
The results box shows the tabulation of the data based on the relationships.
Least squares: y = ax + b
By deriving this equation and then equating it to zero, the values of a and b are obtained:
E E
g g
Yo RT RT x 1 x 2
1
2 1.572 1.013 0.452 0.013 0.087 0.6207
3 1.470 1.026 0.385 0.026 0.104 0.6127
4 1.320 1.075 0.278 0.073 0.135 0.6282
5 1.246 1.112 0.220 0.106 0.148 0.6363
6 1.163 1.157 0.151 0.015 0.148 0.5990
7 1.097 1.233 0.093 0.209 0.148 0.5939
8 1.050 1.311 0.049 0.271 0.136 0.5688
9 1.031 1.350 0.031 0.300 0.117 0.5381
10 41.021 1.382 0.021 0.324 0.104 0.5222
11 1.012 1.410 0.012 0.343 0.086 0.4973
12
Equation (5) is differentiated twice first with respect to “a” and then with respect to “b”.
77
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
Earring:
Intersection:
E
g
= A 12+( A ¿ ¿ 21+ A12) x 1 ¿
x1 x 2 RT
78
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
x1 x2
y= 1 A 12− A21
g
E
y=ax+ b , whereb= : and a=
A 12 A 12 × A 21
RT
Operating
From this data obtain the calculated values using the following equations:
79
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
With the following experimental data, extracted from the Journal Eng. Chemical, for the binary system
diethyl ether (1) / Ethyl – 2 dimethyl ethyl ether (2), for the temperature of 303.15 K, represent in it the
models: Margules, Van Laar and Wilson for the liquid phase, considering the vapor phase as ideal
behavior where i = 1.
P (kpa) X1 Y1
19.29 0 0
29.97 0.1293 0.4755
31.44 0.1455 0.5080
39.53 0.2516 0.6518
46.33 0.3322 0.7186
52.5 0.4044 0.7667
58.84 0.4971 0.8094
70.29 0.6929 0.8889
77.61 0.8133 0.9388
83.73 0.945 0.9804
By the equation:
We found :
80
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
E
g
Then with the equation: =x 1 ln γ 1 + x 2 ln γ 2
RT
E
g
E
g
P x1 y1 1 2 ln1 ln 2 RT RT x 1 x 2
19.29 0 0 … 1 … 0 … …
29.967 0.1293 0.4755 0.12860502 0.93590434 0.25157565 -0.066242 -0.02514818 -0.22337754
31.44 0.1455 0.508 1.28086227 0.93843316 0.2475335 -0.06354365 -0.01828192 -0.14704381
39.53 0.2516 0.6518 1.19494994 0.95343167 0.17810429 -0.04768751 0.0091217 0.04844305
46.33 0.3322 0.7186 1.16941609 1.01206347 0.15650455 0.01199129 0.0599986 0.27045502
52.5 0.4044 0.7667 1.16142935 1.06607345 0.14965145 0.06398222 0.09862686 0.04094769
58.84 0.4971 0.8094 1.11792142 1.15606352 0.11147109 0.14502072 0.1283432 0.51339006
70.29 0.6929 0.8889 1.05219217 1.31182433 0.05087577 0.27629998 0.12010355 0.56442397
77.61 0.8133 0.9388 1.04534385 1.31884136 0.04434588 0.2767536 0.0877364 0.57780955
83 0.945 0.9804 1.01361205 1.33374523 0.01352023 0.28799095 0.02861612 0.55057477
85.7 1 1 1 … 0 … … …
E
g
=( A 21−A 12 ) x 1 + A12
x1 x 2 RT
y=m x 1+ b
E
g
Then we graph vs x1
RT x 1 x 2
Fitting to a straight line:
A12 = -0.193 r = 0.88092754
A21 - A12 = 1.062 A21 = 0.869
A12 = ln 1 = - 0.193 A21 = ln 2 = 0.869
We find the corrected 1 and 2:
81
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
To correct y1:
sat sat
x 1 γ 1 P1 x 1 γ 1 P1
y 1= =
P ( x1 γ 1 P1sat + x 2 γ 2 Psat
2 )
x 1 γ 1 × 85.7
y=
( x 1 γ 1 ×85.7+ x2 γ 2 × 19.29 )
E
g
E
g
P x1 y1 1 2 ln1 ln2 RT RT x 1 x 2
82
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
We also work with the experimental data given above and obtain the following data in order to find the
van Laar parameters:
It is shown that:
Where:
1 A 12− A21
a A 12 = b = A12∗A 21
a = 2.2723 b = 0.46722
Obtaining the Van Laar parameters we proceed to calculate the following corrected data for the VAN
LAAR model by applying the following equation:
A12 A21
ln (γ 1 )= ln ( γ 2 )=
A X A X
(1+ 12 1 )2 (1+ 21 2 )2
A21 X 2 A12 X 1
With the new values the following table is generated with the corrected values
GE/
X1 Y1 calc. P calc. lnY1 calc lnY2 calc GË/RT X1X2RT
0 0 19.29 0.4423 0 0 0.4423
0.1293 0.4614 32.97 0.317 0.055 0.0483 0.429
0.1455 0.4907 34.443 0.3043 0.0622 0.0531 0.4277
0.2516 0.627 43.009 0.2238 0.1054 0.07889 0.41
0.3322 0.6962 48.5977 0.1726 0.137 0.09154 0.4126
0.4044 0.7451 53.1594 0.1336 0.1646 0.098 0.407
0.4971 0.797 58.5403 0.0919 0.1989 0.1 0.4
0.6929 0.887 69.0486 0.0319 0.2677 0.0822 0.386
0.8133 0.959 75.3898 0.011 0.3076 0.0574 0.3783
0.945 0.987 82.5807 0.000936 0.3495 0.01922 0.3698
1 1 85.7 0 0.3664 0 0.36647
84
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
WILSON MODEL:
The constants a and b are the same as for the Margules model. (a=−0 . 039122 and
b= 0 . 401937 )
g
E
− x1 x2
= ln ( x 1 + x 2 Λ12) + ln ( x 2 + x 1 Λ 21)
RT x 1 x 2 x 1 x 2 x1 x2
ln γ 1=−ln ( x1 + Λ 12 x 2) + x2
( Λ12
−
Λ 21
x 1+ Λ12 x 2 x 2 + Λ21 Λ21 x 2 )
ln γ 2=−ln ( x2 + Λ 21 x 1 )−x 1
( Λ 12
−
Λ 21
x 1 + Λ12 x2 x 2+ Λ 21 Λ21 x2 )
Wilson's equations expressed at infinite dilution, that is, at the limits of the graph are:
85
Offprint of Thermodynamics for Chemical Engineering Policarpo Suero I.
86