Ada4077 2 Ep
Ada4077 2 Ep
15053-001
V– 4 +IN B
Low input bias current: 1 nA maximum at TA = 25°C 5
APPLICATIONS
Process control front-end amplifiers
Wireless base station control circuits
Optical network control circuits
Instrumentation
Sensors and controls: thermocouples, RTDs, strain gages, and
shunt current measurements
Precision filters
GENERAL DESCRIPTION The ADA4077-2-EP is available in an 8-lead MSOP.
The dual ADA4077-2-EP amplifier features extremely low offset Additional application and technical information can be found in the
voltage and drift, and low input bias current, noise, and power ADA4077-2 data sheet.
consumption. Outputs are stable with capacitive loads of more 160
VSY = ±5V
than 1000 pF with no external compensation. 140 MSOP
15053-103
TABLE OF CONTENTS
Features .............................................................................................. 1 Electrical Characteristics, ±15 V .................................................4
Enhanced Product Features ............................................................ 1 Absolute Maximum Ratings ........................................................5
Applications ....................................................................................... 1 Thermal Resistance .......................................................................5
Pin Connection Diagram ................................................................ 1 ESD Caution...................................................................................5
General Description ......................................................................... 1 Pin Configuration and Function Descriptions..............................6
Revision History ............................................................................... 2 Typical Performance Characteristics ..............................................7
Specifications..................................................................................... 3 Outline Dimensions ....................................................................... 16
Electrical Characteristics, ±5 V .................................................. 3 Ordering Guide .......................................................................... 16
REVISION HISTORY
12/2016—Revision 0: Initial Version
Rev. 0 | Page 2 of 16
Enhanced Product ADA4077-2-EP
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS, ±5 V
VSY = ±5.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter Symbol Test Conditions/Comments Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 50 90 µV
−55°C < TA < +125°C 220 µV
Offset Voltage Drift ΔVOS/ΔT −55°C < TA < +125°C 0.5 1.2 µV/°C
Input Bias Current IB −1 −0.4 +1 nA
−55°C < TA < +125°C −1.5 +1.5 nA
Input Offset Current IOS −0.5 +0.1 +0.5 nA
−55°C < TA < +125°C −1.0 +1.0 nA
Input Voltage Range −3.8 +3 V
Common-Mode Rejection Ratio CMRR VCM = −3.8 V to +3 V 122 140 dB
VCM = −3.8 V to +3 V, −55°C < TA < +85°C 120 dB
VCM = −3.8 V to +2.8 V, 85°C < TA < 125°C 120 dB
Large Signal Voltage Gain AV RL = 2 kΩ, VO = −3.0 V to +3.0 V 121 130 dB
−55°C < TA < +125°C 120 dB
Input Capacitance CINCM Common mode 5 pF
Input Resistance RIN Common mode 70 GΩ
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA 3.8 V
−55°C < TA < +125°C 3.7 V
Output Voltage Low VOL IL = 1 mA −3.8 V
−55°C < TA < +125°C −3.7 V
Output Current IOUT VDROPOUT < 1.6 V ±10 mA
Short-Circuit Current ISC TA = 25°C 22 mA
Closed-Loop Output Impedance ZOUT f = 1 kHz, AV = +1 0.05 Ω
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = ±2.5 V to ±18 V 123 128 dB
−55°C < TA < +125°C 120 dB
Supply Current per Amplifier ISY VO = 0 V 400 450 µA
−55°C < TA < +125°C 650 µA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 2 kΩ 1.2 V/µs
Settling Time to 0.1% tS VIN = 1 V step, RL = 2 kΩ, AV = −1 3 µs
Gain Bandwidth Product GBP VIN = 10 mV p-p, RL = 2 kΩ, AV = +100 3.9 MHz
Unity-Gain Crossover UGC VIN = 10 mV p-p, RL = 2 kΩ, AV = +1 3.9 MHz
−3 dB Closed-Loop Bandwidth −3 dB AV = +1, VIN = 10 mV p-p, RL = 2 kΩ 5.9 MHz
Phase Margin ΦM VIN = 10 mV p-p, RL = 2 kΩ, AV = +1 55 Degrees
Total Harmonic Distortion Plus Noise THD + N VIN = 1 V rms, AV = +1, RL = 2 kΩ, 0.004 %
f = 1 kHz
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 0.25 µV p-p
Voltage Noise Density en f = 1 Hz 13 nV/√Hz
f = 100 Hz 7 nV/√Hz
f = 1000 Hz 6.9 nV/√Hz
Current Noise Density in f = 1 kHz 0.2 pA/√Hz
MULTIPLE AMPLIFIERS CHANNEL SEPARATION CS f = 1 kHz, RL = 10 kΩ −125 dB
Rev. 0 | Page 3 of 16
ADA4077-2-EP Enhanced Product
ELECTRICAL CHARACTERISTICS, ±15 V
VSY = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Test Conditions/Comments Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 50 90 µV
−55°C < TA < +125°C 220 µV
Offset Voltage Drift ΔVOS/ΔT −55°C < TA < +125°C 0.5 1.2 µV/°C
Input Bias Current IB −1 −0.4 +1 nA
−55°C < TA < +125°C −1.5 +1.5 nA
Input Offset Current IOS −0.5 +0.1 +0.5 nA
−55°C < TA < +125°C −1.0 +1.0 nA
Input Voltage Range −13.8 +13 V
Common-Mode Rejection Ratio CMRR VCM = −13.8 V to +13 V 132 150 dB
−55°C < TA < +125°C 130 dB
Large Signal Voltage Gain
AV RL = 2 kΩ, VO = −13.0 V to +13.0 V 125 130 dB
−55°C < TA < +125°C 120 dB
Input Capacitance CINDM Differential mode 3 pF
CINCM Common mode 5 pF
Input Resistance RIN Common mode 70 GΩ
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA 13.8 V
−55°C < TA < +125°C 13.7 V
Output Voltage Low VOL IL = 1 mA −13.8 V
−55°C < TA < +125°C −13.7 V
Output Current IOUT VDROPOUT < 1.2 V ±10 mA
Short-Circuit Current ISC TA = 25°C 22 mA
Closed-Loop Output Impedance ZOUT f = 1 kHz, AV = +1 0.05 Ω
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = ±2.5 V to ±18 V 123 128 dB
−55°C < TA < +125°C 120 dB
Supply Current per Amplifier ISY VO = 0 V 400 500 µA
−55°C < TA < +125°C 650 µA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 2 kΩ 1.2 V/µs
Settling Time to 0.01% tS VIN = 10 V p-p, RL = 2 kΩ, AV = −1 16 µs
Settling Time to 0.1% tS VIN = 10 V p-p, RL = 2 kΩ, AV = −1 10 µs
Gain Bandwidth Product GBP VIN = 10 mV p-p, RL = 2 kΩ, AV = +100 3.6 MHz
Unity-Gain Crossover UGC VIN = 10 mV p-p, RL = 2 kΩ, AV = +1 3.9 MHz
−3 dB Closed-Loop Bandwidth −3 dB AV = +1, VIN = 10 mV p-p, RL = 2 kΩ 5.5 MHz
Phase Margin ΦM VIN = 10 mV p-p, RL = 2 kΩ, AV = +1 58 Degrees
Total Harmonic Distortion Plus Noise THD + N VIN = 1 V rms, AV = +1, RL = 2 kΩ, 0.004 %
f = 1 kHz
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 0.25 µV p-p
Voltage Noise Density en f = 1 Hz 13 nV/√Hz
f = 100 Hz 7 nV/√Hz
f = 1000 Hz 6.9 nV/√Hz
Current Noise Density in f = 1 kHz 0.2 pA/√Hz
MULTIPLE AMPLIFIERS CHANNEL SEPARATION CS f = 1 kHz, RL = 10 kΩ −125 dB
Rev. 0 | Page 4 of 16
Enhanced Product ADA4077-2-EP
ABSOLUTE MAXIMUM RATINGS
Table 3. THERMAL RESISTANCE
Parameter Rating Thermal performance is directly linked to printed circuit board
Supply Voltage 36 V (PCB) design and operating environment. Careful attention to
Input Voltage ±VSY PCB thermal design is required.
Input Current1 ±10 mA θJA is the natural convection junction to ambient thermal
Differential Input Voltage ±VSY resistance measured in a one cubic foot sealed enclosure. θJC is
Output Short-Circuit Duration to GND Indefinite the junction to case thermal resistance.
Storage Temperature Range −65°C to +150°C
Operating Temperature Range −55°C to +125°C Table 4. Thermal Resistance
Junction Temperature Range −65°C to +150°C Package Type θJA θJC Unit
Maximum Reflow, Soldering (10 sec) 260°C RM-81 170 77 °C/W
ESD Human Body Model (HBM)2 6 kV 1
Thermal impedance simulated values are based on JEDEC JESD51-12.
Field Induced Charge Device Model (FICDM)3 1.25 kV
1
The input pins have clamp diodes to the power supply pins and to each ESD CAUTION
other. Limit the input current to 10 mA or less whenever input signals
exceed the power supply rail by 0.3 V.
2
ESDA/JEDEC JS-001-2011 applicable standard.
3
JESD22-C101 (ESD FICDM standard of JEDEC) applicable standard.
Rev. 0 | Page 5 of 16
ADA4077-2-EP Enhanced Product
15053-004
V– 4 5 +IN B
Rev. 0 | Page 6 of 16
Enhanced Product ADA4077-2-EP
120 120
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
100 100
80 80
60 60
40 40
20 20
0 0
15053-003
0
0
10
20
30
40
50
60
70
80
90
10
20
30
40
50
60
70
80
90
–90
–80
–70
–60
–50
–40
–30
–20
–10
–90
–80
–70
–60
–50
–40
–30
–20
–10
15053-006
VOS (µV) VOS (µV)
Figure 4. Offset Voltage (VOS) Distribution, VSY = ±5 V Figure 7. Offset Voltage (VOS) Distribution, VSY = ±15 V
25 25
VSY = ±5V VSY = ±15V
20 20
15 15
10 10
5 5
VOS (µV)
VOS (µV)
0 0
–5 –5
–10 –10
–15 –15
–20 –20
–25 –25
15053-213
15053-210
–75 –50 –25 0 25 50 75 100 125 150 –75 –50 –25 0 25 50 75 100 125 150
TEMPERATURE (°C) TEMPERATURE (°C)
Figure 5. Offset Voltage (VOS) vs. Temperature, VSY = ±5 V Figure 8. Offset Voltage (VOS) vs. Temperature, VSY = ±15 V
90 10
85 VSY = ±15V, ±5V
–55°C ≤ TA ≤ +125°C
80
75
70 5
NUMBER OF AMPLIFIERS
65
60
55
VOS (µV)
50
45 0
40
35
30
25 –5
20
15
10
5
0 –10
15053-134
0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0 5 10 15 20 25 30 35
15053-130
VSY (V)
ΔVOS/ΔT (µV/°C)
Figure 6. Offset Voltage Drift (ΔVOS/ΔT) Distribution Figure 9. Offset Voltage (VOS) vs. Power Supply Voltage (VSY)
Rev. 0 | Page 7 of 16
ADA4077-2-EP Enhanced Product
100 600
VSY = ±15V
80 –15V ≤ VCM ≤ +15V
500
60
40
400
20
VOS (µV)
ISY (µA)
0 300
–20
200
–40 –55°C
–40°C
–60 0°C
100 +25°C
AVERAGE +85°C
–80 AVERAGE = +3σ +105°C
AVERAGE = –3σ +125°C
–100 0
15053-218
15053-112
–15 –13 –11 –9 –7 –5 –3 –1 1 3 5 7 9 11 13 15 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
VCM (V) POWER SUPPLY VOLTAGE (V)
Figure 10. Offset Voltage (VOS) vs. Common-Mode Voltage (VCM), VSY = ±15 V Figure 13. Supply Current per Amplifier (ISY) vs. Power Supply Voltage (VSY)
4.15 14.15
VSY = ±5V VSY = ±15V
4.10 14.10
4.05 14.05
VOH VOH
4.00 14.00
3.95 13.95
VOL
VOL
3.90 13.90
3.85 13.85
3.80 13.80
3.75 13.75
15053-140
15053-021
–75 –50 –25 0 25 50 75 100 125 150 –75 –50 –25 0 25 50 75 100 125 150
TEMPERATURE (°C) TEMPERATURE (°C)
Figure 11. Output Voltage Swing vs. Temperature, VSY = ±5 V Figure 14. Output Voltage Swing vs. Temperature, VSY = ±15 V
350 400
VSY = ±5V VSY = ±15V
350
300
300
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
250
250
200
200
150
150
100
100
50 50
0 0
0
MORE
–1
–0.9
–0.8
–0.7
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1
0
MORE
–1.0
–0.9
–0.8
–0.7
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1
15053-016
15053-013
Figure 12. Input Bias Current Distribution, VSY = ±5 V Figure 15. Input Bias Current Distribution, VSY = ±15 V
Rev. 0 | Page 8 of 16
Enhanced Product ADA4077-2-EP
0 0
VSY = ±5V VSY = ±15V
–0.1 –0.1
–0.2 –0.2
–IB –IB
–0.3 –0.3
IB (nA)
IB (nA)
+IB
+IB
–0.4 –0.4
–0.5 –0.5
–0.6 –0.6
–0.7 –0.7
15053-017
15053-014
–75 –50 –25 0 25 50 75 100 125 150 –75 –50 –25 0 25 50 75 100 125 150
TEMPERATURE (°C) TEMPERATURE (°C)
Figure 16. Input Bias Current (IB) vs. Temperature, VSY = ±5 V Figure 19. Input Bias Current (IB) vs. Temperature, VSY = ±15 V
100 100
–55°C VSY = ±5V –55°C VSY = ±15V
–40°C –40°C
0°C 0°C
+25°C +25°C
+85°C +85°C
+105°C +105°C
+125°C +125°C
10 10
1 1
0.1 0.1
15053-225
15053-222
Figure 17. Output Dropout Voltage vs. Sink Current, VSY = ±5 V Figure 20. Output Dropout Voltage vs. Sink Current, VSY = ±15 V
100 100
–55°C VSY = ±5V –55°C VSY = ±15V
–40°C –40°C
OUTPUT DROPOUT VOLTAGE (–VOH + V+)
OUTPUT DROPOUT VOLTAGE (–VOH + V+)
0°C 0°C
+25°C +25°C
+85°C +85°C
+105°C +105°C
+125°C +125°C
10 10
1 1
0.1 0.1
15053-229
15053-226
Figure 18. Output Dropout Voltage vs. Source Current, VSY = ±5 V Figure 21. Output Dropout Voltage vs. Source Current, VSY = ±15 V
Rev. 0 | Page 9 of 16
ADA4077-2-EP Enhanced Product
150 150 150 150
GAIN = 0pF GAIN = 100pF GAIN = 200pF GAIN = 0pF GAIN = 100pF GAIN = 200pF
PHASE = 0pF PHASE = 100pF PHASE = 200pF PHASE = 0pF PHASE = 100pF PHASE = 200pF
100 100 100 100
GAIN (dB)
0 0 0 0
15053-227
15053-230
10k 100k 1M 10M 100M 10k 100k 1M 10M 100M
FREQUENCY (Hz) FREQUENCY (Hz)
Figure 22. Open-Loop Gain and Phase Margin vs. Frequency, VSY = ±5 V Figure 25. Open-Loop Gain and Phase Margin vs. Frequency, VSY = ±15 V
133 160
VSY = ±2.5V TO ±18V VSY = ±5V
132
131 155
130
129 150
CMRR (dB)
PSRR (dB)
128
127 145
126
125 140
124
123 135
15053-035
15053-035
–75 –50 –25 0 25 50 75 100 125 150 –75 –50 –25 0 25 50 75 100 125 150
TEMPERATURE (°C) TEMPERATURE (°C)
Figure 23. PSRR vs. Temperature, VSY = ±2.5 V to ±18 V Figure 26. CMRR vs. Temperature, VSY = ±5 V
120 140
VSY = ±15V
VSY = ±5V VSY = ±5V
100 120
80 100
CMRR (dB)
PSRR (dB)
60 80
40 PSRR– 60
PSRR+
20 40
0 20
–20 0
15053-034
15053-029
Figure 24. PSRR vs. Frequency, VSY = ±5 V Figure 27. CMRR vs. Frequency, VSY = ±5 V and VSY = ±15 V
Rev. 0 | Page 10 of 16
Enhanced Product ADA4077-2-EP
120 160
VSY = ±15V
VSY = ±15V
100
155
80
150
CMRR (dB)
PSRR (dB)
60 PSRR–
40
PSRR+ 145
20
140
0
–20 135
15053-037
15053-033
100 1k 10k 100k 1M 10M –75 –50 –25 0 25 50 75 100 125 150
FREQUENCY (Hz) TEMPERATURE (°C)
Figure 28. PSRR vs. Frequency, VSY = ±15 V Figure 31. CMRR vs. Temperature, VSY = ±15 V
1k 1k
AV = +100 AV = +100
10 AV = +10 10 AV = +10
ZOUT (Ω)
ZOUT (Ω)
1 AV = +1 1 AV = +1
0.1 0.1
0.01 0.01
0.001 0.001
15053-036
15053-039
100 1k 10k 100k 1M 10M 100 1k 10k 100k 1M 10M
FREQUENCY (Hz) FREQUENCY (Hz)
Figure 29. Output Impedance (ZOUT) vs. Frequency, VSY = ±5 V Figure 32. Output Impedance (ZOUT) vs. Frequency, VSY = ±15 V
50 50
G = 100 VSY = ±5V G = 100 VSY = ±15V
40 40
30 30
CLOSED-LOOP GAIN (dB)
G = 10
CLOSED-LOOP GAIN (dB)
G = 10
20 20
10 10
G=1 G=1
0 0
–10 –10
–20 –20
–30 –30
–40 –40
–50 –50
15053-028
15053-031
Figure 30. Closed-Loop Gain vs. Frequency, VSY = ±5 V Figure 33. Closed-Loop Gain vs. Frequency, VSY = ±15 V
Rev. 0 | Page 11 of 16
ADA4077-2-EP OUTPUT VOLTAGE (0.2V/DIV) Enhanced Product
15053-040
15053-043
TIME (100µs/DIV) TIME (100µs/DIV)
Figure 34. Large Signal Transient Response, VSY = ±5 V Figure 37. Large Signal Transient Response, VSY = ±15 V
0.20 0.20
0.15 0.15
0.10 0.10
OUTPUT VOLTAGE (V)
0 0
VSY = ±5V
–0.05 –0.05
VIN = 100mV p-p
AV = +1 VSY = ±15V
–0.10 RL = 2kΩ –0.10 VIN = 100mV p-p
CL = 1000pF AV = +1
RL = 2kΩ
–0.15 –0.15 CL = 1000pF
–0.20 –0.20
15053-344
15053-247
–0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
TIME (ms) TIME (ms)
Figure 35. Small Signal Transient Response, VSY = ±5 V Figure 38. Small Signal Transient Response, VSY = ±15 V
INPUT VOLTAGE (V)
0.5 0.5 35
INPUT 0 30
0
–0.5 25
RL = 10kΩ
–2.0 10
3
–2.5 5
OUTPUT 1
–3.0 0
15053-046
–1 –3.5 –5
15053-248
Figure 36. Positive Overload Recovery, VSY = ±5 V Figure 39. Positive Overload Recovery, VSY = ±15 V
Rev. 0 | Page 12 of 16
Enhanced Product
INPUT VOLTAGE (V) ADA4077-2-EP
INPUT INPUT
0 0
–0.5 –0.5
OUTPUT
1 0
15053-051
15053-047
–5 –15
TIME (10µs/DIV) TIME (10µs/DIV)
Figure 40. Negative Overload Recovery, VSY = ±5 V Figure 43. Negative Overload Recovery, VSY = ±15 V
40 40
VSY = ±5V VSY = ±15V
35 RL = 2kΩ 35 RL = 2kΩ
30 30
OVERSHOOT (%)
OVERSHOOT (%)
25 25
20 20
15 15
OS+ OS+
OS– OS–
10 10
5 5
0 0
15053-250
15053-253
1p 10p 100p 1n 10n 1p 10p 100p 1n 10n
LOAD CAPACITANCE (F) LOAD CAPACITANCE (F)
Figure 41. Small Signal Overshoot vs. Load Capacitance, VSY = ±5 V Figure 44. Small Signal Overshoot vs. Load Capacitance, VSY = ±15 V
0 0.03 0 0.15
OUTPUT VOLTAGE (V)
VSY = ±5V
–0.5 VIN = 1V p-p 0.02 –5 0.10
RL = 2kΩ
–1.0 0.01 –10 0.05
–1.5 0 –15 0
15053-254
Rev. 0 | Page 13 of 16
ADA4077-2-EP Enhanced Product
1.0 0.05 10 0.25
–1.5 0 –15 0
15053-252
15053-255
–3.0 –0.03 –30 –0.15
TIME (1µs/DIV) TIME (1µs/DIV)
Figure 46. Negative 0.1% Settling Time, VSY = ±5 V Figure 49. Negative 0.1% Settling Time, VSY = ±15 V
1k 100
VSY = ±15V
VSY = ±5V 90 VSY = ±15V
AV = +1 VSY = ±5V
VOLTAGE NOISE DENSITY (nV/√Hz)
70
100
60
50
40
10
30
20
10
1 0
15053-053
15053-153
10 100 1k 10k 100k 1M 10M 0 0.5 1.0 1.5 2.0 2.5 3.0
FREQUENCY (Hz) FREQUENCY (Hz)
Figure 47. Voltage Noise Density vs. Frequency, VSY = ±5 V and VSY = ±15 V Figure 50. Voltage Noise Corner vs. Frequency, VSY = ±15 V and VSY = ±5 V
1 100
VSY = ±5V VSY = ±15V
10
0.1
1 BANDWIDTH = 80kHz
BANDWIDTH = 500kHz
THD + N (%)
THD + N (%)
BANDWIDTH = 80kHz
BANDWIDTH = 500kHz
0.01 0.1
0.01
0.001
0.001
0.0001 0.0001
15053-155
15053-158
Figure 48. THD + N vs. Frequency, VSY = ±5 V Figure 51. THD + N vs. Frequency, VSY = ±15 V
Rev. 0 | Page 14 of 16
Enhanced Product ADA4077-2-EP
15053-054
TIME (1s/DIV) TIME (1s/DIV)
Figure 52. 0.1 Hz to 10 Hz Noise, VSY = ±15 V Figure 55. 0.1 Hz to 10 Hz Noise, VSY = ±5 V
200 0
VSY = ±15V 10kΩ
100
–15V ≤ VCM ≤ +15V –20 VCC VCC
1kΩ
0 TA = 25°C – –
–400 –80
–500
–100
–600
–700 –120
VSY = ±15V
–800 MEAN +3σ
VIN = 10V p-p
MEAN –140 AV = +1
–900 MEAN –3σ RL = 10kΩ
–1000 –160
15053-244
15053-219
Figure 53. Input Bias Current (IB) vs. Common-Mode Voltage (VCM) Figure 56. Channel Separation, VSY = ±15 V
100 100
VSY = ±5V VSY = ±15V
CURRENT NOISE DENSITY (pA/√Hz)
CURRENT NOISE DENSITY (pA/√Hz)
10 10
1 1
0.1 0.1
15053-267
15053-268
Figure 54. Current Noise Density vs. Frequency, VSY = ±5 V Figure 57. Current Noise Density vs. Frequency, VSY = ±15 V
Rev. 0 | Page 15 of 16
ADA4077-2-EP Enhanced Product
OUTLINE DIMENSIONS
3.20
3.00
2.80
8 5 5.15
3.20 4.90
3.00 4.65
2.80 1
4
PIN 1
IDENTIFIER
0.65 BSC
10-07-2009-B
0.10
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option Branding
ADA4077-2TRMZ-EP −55°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 Y6Q
ADA4077-2TRMZ-EPR7 −55°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 Y6Q
1
Z = RoHS Compliant Part.
Rev. 0 | Page 16 of 16