Mock p3 Solved
Mock p3 Solved
Mensuration
Volume of sphere = 4
3
πr 3
Algebra
For the quadratic equation ax 2 + bx + c = 0 :
−b ± b 2 − 4ac
x=
2a
For an arithmetic series:
un = a + (n − 1)d , S n = 12 n( a + l ) = 12 n{2a + (n − 1) d }
Binomial series:
n n n
(a + b) n = a n + a n −1b + a n − 2b 2 + a n −3b3 + K + b n , where n is a positive integer
1 2 3
n n!
and =
r r!(n − r )!
n(n − 1) 2 n(n − 1)(n − 2) 3
(1 + x) n = 1 + nx + x + x + K , where n is rational and x < 1
2! 3!
2
Trigonometry
sin θ
tan θ ≡
cos θ
cos 2 θ + sin 2 θ ≡ 1 , 1 + tan 2 θ ≡ sec 2 θ , cot 2 θ + 1 ≡ cosec 2 θ
sin( A ± B) ≡ sin A cos B ± cos A sin B
cos( A ± B) ≡ cos A cos B m sin A sin B
tan A ± tan B
tan( A ± B ) ≡
1 m tan A tan B
sin 2 A ≡ 2sin A cos A
cos 2 A ≡ cos 2 A − sin 2 A ≡ 2cos 2 A − 1 ≡ 1 − 2sin 2 A
2 tan A
tan 2 A ≡
1 − tan 2 A
Principal values:
− 12 π ⩽ sin −1 x ⩽ 12 π , 0 ⩽ cos −1 x ⩽ π , − 12 π < tan −1 x < 12 π
Differentiation
f( x ) f ′( x )
xn nx n −1
1
ln x
x
ex ex
sin x cos x
cos x − sin x
tan x sec 2 x
sec x sec x tan x
cosec x − cosec x cot x
cot x − cosec 2 x
1
tan −1 x
1 + x2
du dv
uv v +u
dx dx
du dv
v −u
u dx dx
v v2
dy dy dx
If x = f(t ) and y = g(t ) then = ÷
dx dt dt
3
Integration
(Arbitrary constants are omitted; a denotes a positive constant.)
f( x ) ∫ f( x ) dx
x n +1
xn (n ≠ −1)
n +1
1
ln x
x
ex ex
sin x − cos x
cos x sin x
sec 2 x tan x
1 1 x
tan −1
x + a2
2
a a
1 1 x−a
ln ( x > a)
x − a2
2
2a x + a
1 1 a+x
a − x2
2
ln
2a a − x
( x < a)
dv du
∫ u dx dx = uv −∫ v dx dx
f ′( x)
∫ f ( x) dx = ln f ( x)
Vectors
If a = a1i + a2 j + a3k and b = b1i + b2 j + b3k then
4
PMT
(i) Use this formula to calculate ! correct to 4 decimal places, showing the result of each iteration
to 6 decimal places. [3]
(ii) State an equation satisfied by ! and hence find the exact value of !. [2]
3
ln y
(0.64, 0.76)
(1.69, 0.32)
x2
O
The variables x and y satisfy the equation y = Ae−kx , where A and k are constants. The graph of ln y
2
against x2 is a straight line passing through the points 0.64, 0.76 and 1.69, 0.32, as shown in the
diagram. Find the values of A and k correct to 2 decimal places. [5]
4 The polynomial ax3 − 20x2 + x + 3, where a is a constant, is denoted by p x. It is given that 3x + 1
is a factor of p x.
5
y
x
–a 3a
1
6 (i) By differentiating , show that the derivative of sec x is sec x tan x. Hence show that if
cos x
y = ln sec x + tan x then = sec x.
dy
[4]
dx
(ii) Using the substitution x = ï3 tan 1, find the exact value of
3
Ô
1
3 + x2
dx,
1
7 (i) By first expanding cos x + 45Å, express cos x + 45Å − ï2 sin x in the form R cos x + !,
where R > 0 and 0Å < ! < 90Å. Give the value of R correct to 4 significant figures and the value
of ! correct to 2 decimal places. [5]
in the form 2 + +
1 A B C
x 2x + 1 x 2x + 1
8 (i) Express 2
. [4]
x
y = x2 2x + 1
dy
,
dx
and y = 1 when x = 1. Solve the differential equation and find the exact value of y when x = 2.
Give your value of y in a form not involving logarithms. [7]
9 (a) The complex number w is such that Re w > 0 and w + 3w* = iw2 , where w* denotes the complex
conjugate of w. Find w, giving your answer in the form x + iy, where x and y are real. [5]
(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers
Ï which satisfy both the inequalities Ï − 2i ≤ 2 and 0 ≤ arg Ï + 2 ≤ 14 0. Calculate the greatest
value of Ï for points in this region, giving your answer correct to 2 decimal places. [6]
10 The points A and B have position vectors 2i − 3j + 2k and 5i − 2j + k respectively. The plane p has
equation x + y = 5.
(i) Find the position vector of the point of intersection of the line through A and B and the plane p.
[4]
(ii) A second plane q has an equation of the form x + by + cÏ = d, where b, c and d are constants.
The plane q contains the line AB, and the acute angle between the planes p and q is 60Å. Find
the equation of q. [7]
10 - x
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
ĬÙĉ¯Ġ³íÇñéñĊ°đÈð×
© UCLES 2024 ĬĖęàÆĪĀÆæïÿ³áÎæēÙĂ
ĥõÕĕµĕĥõµĥååõååÅąÕ
9709/33/M/J/24
* 0019655420014 *
where a is a constant.
(a) Given that the acute angle between the directions of these lines is 14 r , find the possible values
of a. [6]
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
ĬÕĉ¯Ġ³íÇñéñĊ¯ĔÅò×
© UCLES 2024 ĬĖęÝ¿Ģï¾áÿõÙÙïöãáĂ
ĥÕåĕµĕÅµÅąõĥµąĥÅÅÕ
9709/33/M/J/24
* 0019655420015 *
DO NOT WRITE IN THIS MARGIN
15
, ,
(b) Given instead that the lines intersect, find the value of a and the position vector of the point of
intersection. [5]
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
............................................................................................................................................................
Ĭ×ĉ¯Ġ³íÇñéñĊ¯ĒÅò×
© UCLES 2024 ĬĖĚÞÇĨó®ØùČĐýćâãÑĂ
ĥÕÕÕõõåÕÕõåĥµĥąąÕÕ
9709/33/M/J/24 [Turn over
* 0019655420016 *
y `1 +124x j dx .
2
2 2
0
Give your answer in the form a + br , where a and b are rational numbers. [9]
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN
....................................................................................................................................................................
....................................................................................................................................................................
....................................................................................................................................................................
ĬÕĉ¯Ġ³íÇñéñĊĔÅô×
© UCLES 2024 ĬĖĚßÇĞā»ã÷ăėßëĄ³éĂ
ĥĥąÕµõåõµÕÕĥõĥåąÅÕ
9709/33/M/J/24