0% found this document useful (0 votes)
26 views19 pages

Mock p3 Solved

A level pure mathematic hard paper solved

Uploaded by

warriormahim
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
26 views19 pages

Mock p3 Solved

A level pure mathematic hard paper solved

Uploaded by

warriormahim
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 19

PURE MATHEMATICS

Mensuration
Volume of sphere = 4
3
πr 3

Surface area of sphere = 4πr 2


Volume of cone or pyramid = 13 × base area × height

Area of curved surface of cone = πr × slant height


Arc length of circle = rθ ( θ in radians)

Area of sector of circle = 12 r 2θ ( θ in radians)

Algebra
For the quadratic equation ax 2 + bx + c = 0 :

−b ± b 2 − 4ac
x=
2a
For an arithmetic series:
un = a + (n − 1)d , S n = 12 n( a + l ) = 12 n{2a + (n − 1) d }

For a geometric series:


a(1 − r n ) a
un = ar n −1 , Sn =
1− r
(r ≠ 1) , S∞ =
1− r
( r <1 )

Binomial series:
n  n  n
(a + b) n = a n +   a n −1b +   a n − 2b 2 +   a n −3b3 + K + b n , where n is a positive integer
1  2  3
n n!
and   =
 r  r!(n − r )!
n(n − 1) 2 n(n − 1)(n − 2) 3
(1 + x) n = 1 + nx + x + x + K , where n is rational and x < 1
2! 3!

2
Trigonometry
sin θ
tan θ ≡
cos θ
cos 2 θ + sin 2 θ ≡ 1 , 1 + tan 2 θ ≡ sec 2 θ , cot 2 θ + 1 ≡ cosec 2 θ
sin( A ± B) ≡ sin A cos B ± cos A sin B
cos( A ± B) ≡ cos A cos B m sin A sin B

tan A ± tan B
tan( A ± B ) ≡
1 m tan A tan B
sin 2 A ≡ 2sin A cos A
cos 2 A ≡ cos 2 A − sin 2 A ≡ 2cos 2 A − 1 ≡ 1 − 2sin 2 A
2 tan A
tan 2 A ≡
1 − tan 2 A
Principal values:
− 12 π ⩽ sin −1 x ⩽ 12 π , 0 ⩽ cos −1 x ⩽ π , − 12 π < tan −1 x < 12 π

Differentiation
f( x ) f ′( x )

xn nx n −1
1
ln x
x
ex ex
sin x cos x
cos x − sin x
tan x sec 2 x
sec x sec x tan x
cosec x − cosec x cot x
cot x − cosec 2 x
1
tan −1 x
1 + x2
du dv
uv v +u
dx dx
du dv
v −u
u dx dx
v v2
dy dy dx
If x = f(t ) and y = g(t ) then = ÷
dx dt dt

3
Integration
(Arbitrary constants are omitted; a denotes a positive constant.)

f( x ) ∫ f( x ) dx
x n +1
xn (n ≠ −1)
n +1
1
ln x
x
ex ex
sin x − cos x
cos x sin x
sec 2 x tan x
1 1 x
tan −1  
x + a2
2
a a
1 1 x−a
ln ( x > a)
x − a2
2
2a x + a

1 1 a+x
a − x2
2
ln
2a a − x
( x < a)

dv du
∫ u dx dx = uv −∫ v dx dx
f ′( x)
∫ f ( x) dx = ln f ( x)

Vectors
If a = a1i + a2 j + a3k and b = b1i + b2 j + b3k then

a.b = a1b1 + a2b2 + a3b3 = a b cos θ

4
PMT

Solve the equation  x − 2 =


1 
1 3x . [3]

2 The sequence of values given by the iterative formula


xn xn3 + 100
xn+1 =
2 xn3 + 25
,

with initial value x1 = 3.5, converges to !.

(i) Use this formula to calculate ! correct to 4 decimal places, showing the result of each iteration
to 6 decimal places. [3]

(ii) State an equation satisfied by ! and hence find the exact value of !. [2]

3
ln y

(0.64, 0.76)

(1.69, 0.32)

x2
O

The variables x and y satisfy the equation y = Ae−kx , where A and k are constants. The graph of ln y
2

against x2 is a straight line passing through the points 0.64, 0.76 and 1.69, 0.32, as shown in the
diagram. Find the values of A and k correct to 2 decimal places. [5]

4 The polynomial ax3 − 20x2 + x + 3, where a is a constant, is denoted by p x. It is given that 3x + 1
is a factor of p x.

(i) Find the value of a. [3]

(ii) When a has this value, factorise p x completely. [3]

5
y

x
–a 3a

The diagram shows the curve with equation


x3 + xy2 + ay2 − 3ax2 = 0,
where a is a positive constant. The maximum point on the curve is M . Find the x-coordinate of M in
terms of a. [6]

© UCLES 2013 9709/32/M/J/13


PMT

1
6 (i) By differentiating , show that the derivative of sec x is sec x tan x. Hence show that if
cos x
y = ln sec x + tan x then = sec x.
dy
[4]
dx

(ii) Using the substitution x = ï3 tan 1, find the exact value of
3
Ô 
1
3 + x2 
dx,
1

expressing your answer as a single logarithm. [4]

7 (i) By first expanding cos x + 45Å, express cos x + 45Å − ï2 sin x in the form R cos x + !,
where R > 0 and 0Å < ! < 90Å. Give the value of R correct to 4 significant figures and the value
of ! correct to 2 decimal places. [5]

(ii) Hence solve the equation


cos x + 45Å − ï2 sin x = 2,
for 0Å < x < 360Å. [4]

in the form 2 + +
1 A B C
x 2x + 1 x 2x + 1
8 (i) Express 2
. [4]
x

(ii) The variables x and y satisfy the differential equation

y = x2 2x + 1
dy
,
dx
and y = 1 when x = 1. Solve the differential equation and find the exact value of y when x = 2.
Give your value of y in a form not involving logarithms. [7]

9 (a) The complex number w is such that Re w > 0 and w + 3w* = iw2 , where w* denotes the complex
conjugate of w. Find w, giving your answer in the form x + iy, where x and y are real. [5]

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers
Ï which satisfy both the inequalities  Ï − 2i ≤ 2 and 0 ≤ arg Ï + 2 ≤ 14 0. Calculate the greatest
value of  Ï  for points in this region, giving your answer correct to 2 decimal places. [6]

10 The points A and B have position vectors 2i − 3j + 2k and 5i − 2j + k respectively. The plane p has
equation x + y = 5.

(i) Find the position vector of the point of intersection of the line through A and B and the plane p.
[4]

(ii) A second plane q has an equation of the form x + by + cÏ = d, where b, c and d are constants.
The plane q contains the line AB, and the acute angle between the planes p and q is 60Å. Find
the equation of q. [7]

© UCLES 2013 9709/32/M/J/13


* 0019655420012 *

DO NOT WRITE IN THIS MARGIN


12
, ,

10 - x

DO NOT WRITE IN THIS MARGIN


A container in the shape of a cuboid has a square base of side x and a height of (10 - x) . It is given
that x varies with time, t , where t 2 0 . The container decreases in volume at a rate which is inversely
proportional to t .
1 1 20
When t = 10 , x= 2 and the rate of decrease of x is 37 .

(a) Show that x and t satisfy the differential equation


dx -1
= . [5]
dt 2t `20x - 3x 2j

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÙĉ¯Ġ³íÇñéñ­Ċ°đÈð×
© UCLES 2024 ĬĖęàÆĪĀÆæïÿ³áÎæēÙĂ
ĥõÕĕµĕĥõµĥååõååÅąÕ
9709/33/M/J/24
* 0019655420014 *

DO NOT WRITE IN THIS MARGIN


14
, ,

10 The equations of two straight lines are

r = i + j + 2ak + m (3i + 4j + ak) and r =- 3i - j + 4k + n (- i + 2j + 2k) ,

where a is a constant.

(a) Given that the acute angle between the directions of these lines is 14 r , find the possible values
of a. [6]

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
ĬÕĉ¯Ġ³íÇñéñ­Ċ¯ĔÅò×
© UCLES 2024 ĬĖęÝ¿Ģï¾áÿõÙÙïöãáĂ
ĥÕåĕµĕÅµÅąõĥµąĥÅÅÕ
9709/33/M/J/24
* 0019655420015 *
DO NOT WRITE IN THIS MARGIN

15
, ,

(b) Given instead that the lines intersect, find the value of a and the position vector of the point of
intersection. [5]

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................
Ĭ×ĉ¯Ġ³íÇñéñ­Ċ¯ĒÅò×
© UCLES 2024 ĬĖĚÞÇĨó®ØùČĐýćâãÑĂ
ĥÕÕÕõõåÕÕõåĥµĥąąÕÕ
9709/33/M/J/24 [Turn over
* 0019655420016 *

DO NOT WRITE IN THIS MARGIN


16
, ,

11 Use the substitution 2x = tan i to find the exact value of


1

y `1 +124x j dx .
2

2 2
0

Give your answer in the form a + br , where a and b are rational numbers. [9]

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

DO NOT WRITE IN THIS MARGIN


....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
DO NOT WRITE IN THIS MARGIN

....................................................................................................................................................................

....................................................................................................................................................................

....................................................................................................................................................................
ĬÕĉ¯Ġ³íÇñéñ­Ċ­ĔÅô×
© UCLES 2024 ĬĖĚßÇĞā»ã÷ăėßëĄ³éĂ
ĥĥąÕµõåõµÕÕĥõĥåąÅÕ
9709/33/M/J/24

You might also like