0% found this document useful (0 votes)
10 views5 pages

Solution 1996098

The document covers various concepts related to matrices and determinants for Class 12 Mathematics, including properties of matrix addition, scalar matrices, and operations involving transposes. It provides explanations and examples for matrix transformations, solving equations, and proving identities using mathematical induction. Additionally, it discusses the relationships between different matrices and their properties in a structured format across multiple sections.

Uploaded by

Love Architect
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
10 views5 pages

Solution 1996098

The document covers various concepts related to matrices and determinants for Class 12 Mathematics, including properties of matrix addition, scalar matrices, and operations involving transposes. It provides explanations and examples for matrix transformations, solving equations, and proving identities using mathematical induction. Additionally, it discusses the relationships between different matrices and their properties in a structured format across multiple sections.

Uploaded by

Love Architect
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

Solution

MATRIX & DETERMINANT

Class 12 - Mathematics
Section A
4 1 4
⎡ ⎤

1. (a) ⎢ 3 −2 5 ⎥
⎣ ⎦
1 3 −1

Explanation:
4 3 1
⎡ ⎤
Let A = ⎢ 1 −2 3⎥
⎣ ⎦
4 5 −1

4 3 1 4 1 4
⎡ ⎤ ⎡ ⎤
Then, A ′
= ⎢1 −2 3⎥ = ⎢3 −2 5⎥ [interchanging the elements of rows and columns]
⎣ ⎦ ⎣ ⎦
4 5 −1 1 3 −1

2.
(b) A = [aij]n where aij = { 0 if i ≠ j
k if i = j for k ∈ R.

Explanation:
A scalar matrix is a type of diagonal matrix if
A = [aij]n where aij = { k for i = j
0 for i ≠ j

3.
(c) A + B = B + A
Explanation:
∵ A + B = B + A [by properties matrix addition, is communtative]

4. (a) 16A
Explanation:
2 0 0
⎡ ⎤

A= ⎢0 2 0⎥
⎣ ⎦
0 0 2

1 0 0
⎡ ⎤

⇒ A= 2⎢0 1 0⎥
⎣ ⎦
0 0 1

We can write as
A = 2I
Hence, A5 = (2I)5
A5 = 32I
A5 = 16 × 2I = 16A
5.
(d) 9
Explanation:
9

6. (a) Both A and R are true and R is the correct explanation of A.


Explanation:
Since, A is a skew symmetric matrix, then
A = -A'
⇒ A2 = (-A')2

1/5
Whatsapp - 7006497301
⇒ A2 = (A2)'
⇒ A2 is symmetric matrix.
Section B
7. We know that, the notation, namely A = [a ij ]m×n indicates that A is a matrix of order m × n, also
1 ≤ i ≤ m, 1 ≤ j ≤ n; i, j ∈ N .
Here, A = [a ij ]2×2
2
(i−2j)
where, a ij =
2
, 1 ≤ i ≤ 2; 1 ≤ j ≤ 2 ...(i)
2
(1−2)
1
∴ a11 = =
2 2
2
(1−2×2)
9
a12 = =
2 2
2
(2−2×1)
a21 = = 0
2
2
(2−2×2)
a22 = = 2
2

1 9

Thus, A = [ 2 2
]
0 2
2×2

8. Given,
3 4
⎡ ⎤
−1 2 1
AT = ⎢ −1 2⎥ ,B=[ ]
1 2 3
⎣ ⎦
0 1

Now
−1 1
⎡ ⎤

BT = ⎢ 2 2⎥
⎣ ⎦
1 3

3 4 −1 1
⎡ ⎤ ⎡ ⎤

AT - BT = ⎢ −1 2⎥ − ⎢ 2 2⎥
⎣ ⎦ ⎣ ⎦
0 1 1 3

3 + 1 4 − 1
⎡ ⎤
AT - BT = ⎢ −1 − 2 2 − 2⎥
⎣ ⎦
0 − 1 1 − 3

4 3
⎡ ⎤

AT - BT = ⎢ −3 0 ⎥
⎣ ⎦
−1 −2

Section C
9. Given, A = B
2
2x + 1 2y x + 3 y + 2
[ ]= [ ]
2
0 y − 5y 0 −6

Since equal matrices has all corresponding entries equal,


So, 2x + 1 = x + 3 ...(i)
2y = y2 + 2 ...(ii)
y2 - 5y = - 6 ...(iii)
Solving equation (i) we get,
2x + 1 = x + 3
2x - x = 3 - 1
x=2
Solving equation (ii) we get,
2y = y2 + 2
y2 - 2y + 2 = 0
D = b2 - 4ac
= (-2)2 - 4(1)(2)
= 4 - 8 = -4
So, there is no real value of y from equation (ii).
Solving equation (iii),

2/5
Whatsapp - 7006497301
y2 - 5y = - 6
y2 - 5y + 6 = 0
y2 - 3y - 2y + 6 = 0
y (y - 3) - 2 (y - 2) = 0
y = 3 or y = 2
From solution of equation (i), (ii) and (iii),
we can say that A and B can not be equal for any value of y.
10. We may write the given matrix as
A = IA
2 0 −1 1 0 0
⎡ ⎤ ⎡ ⎤
∴ ⎢5 1 0⎥ = ⎢0 1 0⎥A
⎣ ⎦ ⎣ ⎦
0 1 3 0 0 1

[Applying R2 → R2 - (5/2) R1]


2 0 −1 1 0 0
⎡ ⎤ ⎡ ⎤

⇒ ⎢0 1 5/2 ⎥ = ⎢ −5/2 1 0⎥A


⎣ ⎦ ⎣ ⎦
0 1 3 0 0 1

[Applying R3 → R3 - R2]
2 0 −1 1 0 0
⎡ ⎤ ⎡ ⎤

⇒ ⎢0 1 5/2 ⎥ = ⎢ −5/2 1 0⎥A

⎣ ⎦ ⎣ ⎦
0 0 1/2 5/2 −1 1

[Applying R2 → R2 - 5R3]
2 0 −1 1 0 0
⎡ ⎤ ⎡ ⎤

⇒ ⎢0 1 0 ⎥ = ⎢ −15 6 −5 ⎥ A

⎣ ⎦ ⎣ ⎦
0 0 1/2 5/2 −1 1

[Applying R1 → R1 + 2R3]
2 0 0 6 −2 2
⎡ ⎤ ⎡ ⎤

⇒ ⎢0 1 0 ⎥ = ⎢ −15 6 −5 ⎥ A

⎣ ⎦ ⎣ ⎦
0 0 1/2 5/2 −1 1

[Applying R1 → 1

2
R1 and R3 → 2R3]
1 0 0 3 −1 1
⎡ ⎤ ⎡ ⎤
⇒ ⎢0 1 0 ⎥ = ⎢ −15 6 −5 ⎥ A
⎣ ⎦ ⎣ ⎦
0 0 1 −5 −2 2

3 −1 1
⎡ ⎤

Hence, ⎢ −15 6 −5 ⎥ is the inverse of given matrix A.


⎣ ⎦
−5 −2 2

Section D
11. i. Number of items purchased by shopkeepers A, B and C can be written in matrix form as
N otebooks pens pencils

144 60 72 A
⎡ ⎤

X= ⎢ 120 72 84 ⎥ B
⎣ ⎦
132 156 96 C

40 N ote book
⎡ ⎤

ii. Since, Y = ⎢ 12 ⎥ P en
⎣ ⎦
3 P encil

144 60 72 40
⎡ ⎤⎡ ⎤

∴ XY = ⎢ 120 72 84 ⎥ ⎢ 12 ⎥
⎣ ⎦⎣ ⎦
132 156 96 3

5760 + 720 + 216 6696


⎡ ⎤ ⎡ ⎤

=⎢ 4800 + 864 + 252 ⎥ = ⎢ 5916 ⎥


⎣ ⎦ ⎣ ⎦
5280 + 1872 + 288 7440

iii. (A + I)2 = A2 + 2A + I = 3A + I
⇒ (A + I)3 = (3A + I) (A + I)
= 3A2 + 4A + I = 7A + I

3/5
Whatsapp - 7006497301
∴(A + I)3 - 7A = I
OR
A2 - B2 = (A - B) (A + B) = A2 + AB - BA - B2
∴ AB = BA
Section E

cos α + sin α √2 sin α
12. Given A = [ – ] .
− √2 sin α cos α − sin α

cos nα + sin nα √2 sin nα
We need to prove that An = [ – ] .
− √2 sin nα cos nα − sin nα

We will prove this result using the principle of mathematical induction.


Step 1: When n = 1, we have An = A1

cos α + sin α √2 sin α
n
⇒ A = [ ]

− √2 sin α cos α − sin α

∴ An = A
Hence, the equation is true for n = 1.
Step 2: Let us assume the equation true for some n = k, where k is a positive integer.

cos kα + sin kα √2 sin kα
k
⇒ A = [ – ]
− √2 sin kα cos kα − sin kα

To prove the given equation is true using mathematical induction, we have to show that the equation is true for n = k+1.Which in
turns proves that the given equation is true for n=k, which was our assumption.

cos(k + 1)α + sin(k + 1)α √2 sin(k + 1)α
Ak+1 = [ – ] .
− √2 sin(k + 1)α cos(k + 1)α − sin(k + 1)α

We know Ak+1 = Ak × A.
– –
cos kα + sin kα √2 sin kα cos α + sin α √2 sin α
k+1
⇒ A = [ – ][ – ]
− √2 sin kα cos kα − sin kα − √2 sin α cos α − sin α

We evaluate each value of this matrix independently.


(a) The value at index (1, 1)
– –
A
11
= (cos kα + sin kα)(cos α + sin α) + (√2 sin kα)(−√2 sin α)
k+1

⇒A = cos kα cos α + cos kα sin α + sin kα cos α + sin kα sin α −2 sin kα sin α
k+1

11

k+1
⇒ A = cos kα cos α + cos kα sin α + sin kα cos α − sin kα sin α
11

k+1
⇒ A = cos kα cos α − sin kα sin α + sin kα cos α + cos kα sin α
11
k+1
⇒ A = cos(kα + α) + sin(kα + α)
11
k+1
∴ A = cos(k + 1)α + sin(k + 1)α
11

(b) The value at index (1, 2)


k+1 – –
A = (cosk α + sin kα)(√2 sin α) + (√2 sin kα)(cos α − sin α)
12
k+1 – – – –
⇒ A = √2 cos kα sin α + √2 sin kα sin α + √2 sin kα cos α − √2 sin kα sin α
12
k+1 – –
⇒ A = √2 cos kα sin α + √2 sin kα cos α
12
k+1 –
⇒ A = √2(cos kα sin α + sin kα cos α)
12

k+1 –
⇒ A = √2(sin kα cos α + cos kα sin α)
12

k+1 –
⇒ A = √2 sin(kα + α)
12
k+1 –
∴ A = √2 sin(k + 1)α
12

(c) The value at index (2, 1)


k+1 – –
A = (− √2 sin kα)(cos α + sin α) + (cos kα − sin kα)(− √2 sin α)
21

k+1 – – – –
⇒ A = − √2 sin kα cos α − √2 sin kα sin α − √2 cos kα sin α + √2 sin kα sin α
21

k+1 – –
⇒ A = − √2 sin kα cos α − √2 cos kα sin α
21
k+1 –
⇒ A = − √2(sin kα cos α + cos kα sin α)
21
k+1 –
⇒ A = − √2 sin(kα + α)
21

k+1 –
∴ A = − √2 sin(k + 1)α
21

(d) The value at index (2, 2)


k+1
⇒ A = −2 sin kα sin α + cos kα cos α − cos kα sin α − sin kα cos α + sin kα sin α
22
k+1
⇒ A = − sin kα sin α + cos kα cos α − cos kα sin α − sin kα cos α
22
k+1
⇒ A = cos kα cos α − sin kα sin α − sin kα cos α − cos kα sin α
22

k+1
⇒ A = cos kα cos α − sin kα sin α − (sin kα cos α + cos kα sin α)
22

4/5
Whatsapp - 7006497301
k+1
⇒ A = cos(kα + α) − sin(kα + α)
22

k+1
∴ A = cos(k + 1)α − sin(k + 1)α
22

So, the matrix Ak+1 is



cos(k + 1)α + sin(k + 1)α √2 sin(k + 1)α
Ak+1 = [ – ]
− √2 sin(k + 1)α cos(k + 1)α − sin(k + 1)α

Hence, the equation is true for n = k + 1 under the assumption that it is true for n = k.
Therefore, by the principle of mathematical induction, the equation is true for all positive integer values of n.

cos nα + sin nα √2 sin nα
Thus, An = [ – ] for all n ∈ N.
− √2 sin nα cos nα − sin nα

13. L.H.S. = A3 - 6A2 + 7A + 2I


1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 0
⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⎢0 2 1⎥⎢0 2 1⎥⎢0 2 1 ⎥ −6 ⎢ 0 2 1⎥⎢0 2 1⎥ + 7⎢0 2 1 ⎥ +2 ⎢ 0 1 0⎥


⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 0 0 1

1 + 0 + 4 0 + 0 + 0 2 + 0 + 6 1 0 2 1 + 0 + 4 0 + 0 + 0 2 + 0 + 6
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢0 + 0 + 2 0 + 4 + 0 0 + 2 + 3 ⎥⎢ 0 2 1 ⎥−6 ⎢ 0 + 0 + 2 0 + 4 + 0 0 + 2 + 3⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦
2 + 0 + 6 0 + 0 + 0 4 + 0 + 9 2 0 3 2 + 0 + 6 0 + 0 + 0 4 + 0 + 9

7 0 14 2 0 0
⎡ ⎤ ⎡ ⎤

+⎢ 0 14 7 ⎥ + ⎢0 2 0⎥
⎣ ⎦ ⎣ ⎦
14 0 21 0 0 2

5 + 0 + 16 0 + 0 + 0 10 + 0 + 24 30 0 48 7 + 2 0 + 0 14 + 0
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ 2 + 0 + 10 0 + 8 + 0 4 + 4 + 15 ⎥ − ⎢ 12 24 30 ⎥ + ⎢ 0 + 0 14 + 2 7 + 0 ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
8 + 0 + 26 0 + 0 + 0 16 + 0 + 39 48 0 78 14 + 0 0 + 0 21 + 2

21 0 34 30 0 48 9 0 14 21 − 30 0 − 0 34 − 48 9 0 14
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⎢ 12 8 23 ⎥ − ⎢ 12 24 30 ⎥ + ⎢ 0 16 7 ⎥ = ⎢ 12 − 12 8 − 24 23 − 30 ⎥ + ⎢ 0 16 7 ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
34 0 55 48 0 78 14 0 23 34 − 48 0 − 0 55 − 78 14 0 23

−9 0 −14 9 0 14 −9 + 9 0 + 0 −14 + 14
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⎢ 0 −16 −7 ⎥ + ⎢ 0 16 7 ⎥= ⎢ 0 + 0 −16 + 16 −7 + 7 ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−14 0 −23 14 0 23 −14 + 14 0 + 0 −23 + 23

0 0 0
⎡ ⎤
= ⎢0 0 0⎥ = 0 (Zero matrix)
⎣ ⎦
0 0 0

= R.H.S. Proved.

5/5
Whatsapp - 7006497301

You might also like