Laplace Transform2
Laplace Transform2
MATHEMATICS-III
UNIT 2: LAPLACE TRANSFORMS
LECTURE 2
TOPICS TO BE COVERED:
−1 2
= 2H t − 1 Sin(t − 1) Since f(t)= 𝐿 =2Sint
𝑠 2 +1
−1 −𝑠 3𝑠 −2𝑠 4
e) 𝐿 𝑒 +𝑒 = 3H(t-1)Cos(t-1)+2H(t-2)(𝑡 − 2)2
𝑠2 +1 𝑠3
−1 3𝑠 −1 4
Since 𝐿 = 3𝐶𝑜𝑠𝑡 𝑎𝑛𝑑 𝐿 = 2𝑡 2
𝑠 2 +1 𝑠3
Theory of Partial fractions
𝑃1 (𝑥)
• Partial Fraction: A partial fraction is a ratio of two polynomials such that
𝑃2 (𝑥)
deg 𝑃1 (𝑥) < deg 𝑃2 𝑥 .
• A partial fraction can be written as a sum of partial fractions as
follows:
𝑝𝑥+𝑞 𝐴 𝐵
• = +
(𝑎𝑥+𝑏)(𝑐𝑥+𝑑) (𝑎𝑥+𝑏) (𝑐𝑥+𝑑)
𝑝𝑥 2 +𝑞𝑥+𝑟 𝐴 𝐵 𝐶
• 2 = + +
𝑎𝑥+𝑏 (𝑐𝑥+𝑑) (𝑎𝑥+𝑏) (𝑎𝑥+𝑏)2 (𝑐𝑥+𝑑)
𝑝𝑥 2 +𝑞𝑥+𝑟 𝐴𝑥+𝐵 𝐶
• = +
𝑎𝑥 2 +𝑏𝑥+𝑐 (𝑑𝑥+𝑒) 𝑎𝑥 2 +𝑏𝑥+𝑐 (𝑑𝑥+𝑒)
The constants A,B,C are computed so as to maintain equality.
Computation of Inverse Laplace transforms
1)Find the inverse Laplace transforms of the following.
(𝑠 2 +𝑠+3) (𝑠 2 +3𝑠+3) (2𝑠 2 +𝑠−5)
a) 2 b) c)
(𝑠 +6𝑠+8)(𝑠−2) (𝑠 2 −6𝑠+9)(𝑠+1) (𝑠 2 −4𝑠+13)(𝑠−3)
−1 𝑠 −2𝑠 2𝑠+3
d)Tan 𝑠 e) 𝑙𝑜𝑔𝑒 f)𝑒
𝑠 2 +1 𝑠 2 +4𝑠+3
2)Use Convolution theorem to find the inverse Laplace transform
𝑠
of 2 2
(𝑠 +4)(𝑠 +1)
Computation of inverse Laplace transform
(𝑠 2 +𝑠+3) (𝑠 2 +𝑠+3) 𝐴 𝐵 𝐶
• 1a) 2 = = + +
(𝑠 +6𝑠+8)(𝑠−2) (𝑠+4)(𝑠+2)(𝑠−2) (𝑠+4) (𝑠+2) (𝑠−2)
(𝑠 2 + 𝑠 + 3) = A(s + 2)(s -2)+ B(s + 4)(s -2)+ C(s + 4)(s +2)
Sub s = -4 we have 15=A(-2)(-6) therefore A=15/12 =5/4.
Sub s=-2 we have 5=B(2)(-4) therefore B= -5/8.
Sub s=2 we have 9=C(6)(4) therefore C=3/8
(𝑠2 +𝑠+3) 5 1 5 1 3 1
= − +
(𝑠2 +6𝑠+8)(𝑠−2) 4 (𝑠+4) 8 𝑠+2 8 (𝑠−2)
(𝑠 2 +𝑠+3) 5 1 5 1 3 1
𝐿−1 2 = 𝐿−1 - 𝐿−1 + 𝐿−1
(𝑠 +6𝑠+8)(𝑠−2) 4 𝑠+4 8 𝑠+2 8 𝑠−2
5 −4𝑡 5 3 2𝑡
= 𝑒 - 𝑒 −2𝑡 + 𝑒
4 8 8
Computation of inverse Laplace transform
(𝑠 2 +3𝑠+3) (𝑠 2 +3𝑠+3) 𝐴 𝐵 𝐶
• 1b) 2 = = + +
(𝑠 −6𝑠+9)(𝑠+1) (𝑠−3)2 (𝑠+1) (𝑠−3) (𝑠−3) 2 (𝑠+1)
• 𝑠 2 + 3𝑠 + 3=A(𝑠 − 3) (𝑠 + 1)+B(𝑠 + 1)+ C(𝑠 − 3)2
• Sub s=3 ; 21=B (4) B=21/4
• Sub s= -1; 1= C x16 C=1/16
• Sub s=0; 3=-3A+B+9C=-3A+21/4+9x1/16=-3A+(21X4+9)/16=-3A+97/16 ; -3A= 3-97/16 ; A=49/48
(𝑠2 +3𝑠+3) 49 1 21 𝐵 1 𝐶
= + +
(𝑠2 −6𝑠+9)(𝑠+1) 48 (𝑠−3) 4 (𝑠−3)2 16 (𝑠+1)
(𝑠 2 +3𝑠+3) 49 −1 1 21 −1 1 1 −1 1
𝐿−1 = 𝐿 + 𝐿 + 𝐿
2
(𝑠 −6𝑠+9)(𝑠+1) 48 𝑠−3 4 (𝑠−3) 2 16 𝑠+1
49 3𝑡 21 3𝑡 −1 1 1 −𝑡 49 3𝑡 21 3𝑡 1
= 𝑒 + 𝑒 𝐿 2 + 𝑒 = 𝑒 + 𝑒 t+ 𝑒 −𝑡
48 4 𝑠 16 48 4 16
Computation of inverse Laplace transform
(2𝑠2 +𝑠−5) 𝐴(𝑠−2)+𝐵 𝐶 𝐴(𝑠−2)+𝐵 𝐶 𝐴(𝑠−2)+𝐵 𝐶
• 1c) 2 = + = + = +
(𝑠 −4𝑠+13)(𝑠−3) (𝑠2 −4𝑠+13) (𝑠−3) (𝑠2 −4𝑠+4+9) (𝑠−3) (𝑠−2)2 +9 (𝑠−3)
(2𝑠 2 + 𝑠 − 5)= (𝐴(𝑠 − 2) + 𝐵) (𝑠 − 3)+C ( 𝑠 − 2)2 + 9 ;
Sub s=3; 16= 10C; C=16/10=8/5;
Sub s=2; 5= -B+9C; B=9C-5= 9x8/5-5=(72-25)/5=47/5; B=47/5
Sub s=0; -5 = -3( -2A+B)+13C =6A-3B+13C; A=-5+3B-13C=-5+3X47/5-13X8/5=12/5
2𝑠2 +𝑠−5 12/5(𝑠−2)+47/5 8/5 12 (𝑠−2) 47 1 8 1
= + = + +
(𝑠2 −4𝑠+13)(𝑠−3) (𝑠−2)2 +9 (𝑠−3) 5 (𝑠−2)2 +9 5 (𝑠−2)2 +9 5 (𝑠−3)
2𝑠 2 +𝑠−5 12 𝑠−2 47 −1 1 8 1
𝐿−1 = 𝐿−1 + 𝐿 + 𝐿−1
(𝑠 2 −4𝑠+13)(𝑠−3) 5 (𝑠−2)2 +9 5 (𝑠−2)2 +9 5 𝑠−3
12 2𝑡 𝑠 47 1 8 1 12 2𝑡 47 8
= 𝑒 𝐿−1 + 𝑒 2𝑡 𝐿−1 + 𝐿−1 = 𝑒 Cos3t+ 𝑒 2𝑡 Sin3t+ 𝑒 3𝑡
5 𝑠 2 +9 5 𝑠 2 +9 5 𝑠−3 5 15 5
Computation of inverse Laplace transform
• 1d) Let 𝐿−1 Tan−1 𝑠 =f(t); then L f(t) = Tan−1 s
𝑑 1
L tf(t) = - Tan−1 s =- = - L 𝑆𝑖𝑛𝑡
𝑑𝑠 𝑠 2 +1
𝑆𝑖𝑛𝑡
Therefore t f(t) = -Sint i:e f(t)= -
𝑡
𝑠 𝑠
1e) Let 𝐿−1 𝑙𝑜𝑔𝑒 =f(t); then L f(t) = 𝑙𝑜𝑔𝑒 = 𝑙𝑜𝑔𝑒 𝑠 - 𝑙𝑜𝑔𝑒 𝑠2 + 1
𝑠 2 +1 𝑠 2 +1
1
= 𝑙𝑜𝑔𝑒 𝑠 - 𝑙𝑜𝑔𝑒 𝑠 2 + 1
2
𝑑 1 1 𝑠
= L tf(t) = - 𝑙𝑜𝑔𝑒 𝑠 − 𝑙𝑜𝑔𝑒 𝑠2 +1 = - = L 1 − L 𝐶𝑜𝑠𝑡
𝑑𝑠 2 𝑠 𝑠 2 +1
1−𝐶𝑜𝑠𝑡
L tf(t) = L(1-Cost) therefore tf(t)= 1-Cost; f(t)=
𝑡
Computation of inverse Laplace transform
−2𝑠 2𝑠+3
• 1 f) 𝑒
𝑠 2 +4𝑠+3
2𝑠+3 2𝑠+3 𝐴 𝐵 3 1 1 𝐴
2 = = + = +
𝑠 +4𝑠+3 (𝑠+3)(𝑠+1) 𝑠+3 𝑠+1 2 𝑠+3 2 𝑠+1
2𝑠+3 3 −1 1 1 −1 1 3 1
𝐿−1 = 𝐿 + 𝐿 = −3𝑡
𝑒 + 𝑒 −𝑡
𝑠2 +4𝑠+3 2 𝑠+3 2 𝑠+1 2 2
𝐿−1 𝑒 −𝑎𝑠 𝐹(𝑠) =H(t-a)f(t-a)
2𝑠+3 3 1
𝐿−1 𝑒 −2𝑠 =H(t-2) 𝑒 −3(𝑡−2) + 𝑒 −(𝑡−2)
𝑠 2 +4𝑠+3 2 2
Computation of inverse Laplace transform
𝑠 𝑠 1
• 2) 2 2 = 2
(𝑠 +4)(𝑠 +1) (𝑠 +4) (𝑠 2 +1)
𝑠 1 2SinACosB=Sin(A+B)+Sin(A-B)
−1 −1
𝐿 2 =Cos2t; 𝐿 2 =Sint 2SinASinB=Cos(A-B)-Cos(A+B)
𝑠 +4 𝑠 +1 2CosACosB=Cos(A-B)+Cos(A+B)
−1 𝑠 1 𝑡
𝐿 =0 𝐶𝑜𝑠2 𝑡 − 𝑥 𝑆𝑖𝑛𝑥𝑑𝑥
(𝑠 2 +4) (𝑠2 +1)
1 𝑡
= 0 𝑆𝑖𝑛 𝑥 + 2𝑡 − 2𝑥 + 𝑆𝑖𝑛(𝑥 − 2𝑡 + 2𝑥)𝑑𝑥
2
= 0 𝑆𝑖𝑛 2𝑡 − 𝑥 + 𝑆𝑖𝑛(3𝑥 − 2𝑡)𝑑𝑥 = 2 {𝐶𝑜𝑠 2𝑡 − 𝑥 - 3 Cos (3𝑥 − 2𝑡)}ฬ 𝑥 = 𝑡
1 𝑡 1 1
2 𝑥=0
1 1 1 5 2
= {𝐶𝑜𝑠 t- Cost- Cos2t- Cos2t}= 6 𝐶𝑜𝑠 t- Cos2t
2 3 3 3
Solving differential equations using
Laplace transforms
𝑑 2 𝑦 𝑑𝑦
• Solve the initial value problem 2 +5 +6y=3𝑒 𝑡 ; y(0)=1,𝑦 / 0 = 2
𝑑𝑡 𝑑𝑡
Solution: Assuming solution exist and has a Laplace transform we
transform the equation to its equivalent Laplace transform equation.
𝑑2 𝑦 𝑑𝑦
L 2 +5 +6y =L(3𝑒 𝑡 )
𝑑𝑡 𝑑𝑡 By Linearity of Laplace transform
𝑑2 𝑦 𝑑𝑦
L + 5L + 6L y =3L(𝑒 𝑡 ) L(𝑓 // ) = 𝑠 2 𝐿 𝑓 − 𝑠𝑓 0 − 𝑓 / (0)
𝑑𝑡 2 𝑑𝑡
3
𝑠2𝐿 𝑦 − 𝑠𝑦 0 − 𝑦 / 0 +5(s𝐿 𝑦 − 𝑦 0 )+ 6L(y)=
𝑠−1
3
L(y)(𝑠 2 +5s+6)- 𝑠𝑦 0 − 𝑦/ 0 -5y(0)=
𝑠−1
Solving differential equations using
Laplace transforms
2 3
• L(y)(𝑠 +5s+6)- 𝑠 − 2-5= sub y(0)=1,𝑦 / 0 = 2
𝑠−1
3 3+(𝑠−1)(𝑠+7) 𝑠 2 +6𝑠−4
L(y)(𝑠 2 +5s+6)= + s+7= =
𝑠−1 𝑠−1 𝑠−1
𝑠2 +6𝑠−4 𝑠2 +6𝑠−4 𝐴 𝐵 𝐶
L(y)= (𝑠2+5s+6)(𝑠−1)= (s+3)(s+2)(𝑠−1) = 𝑠+3
+
𝑠+2
+
𝑠−1
𝑠 2 + 6𝑠 − 4=A(s+2)(s-1)+B(s+3)(s-1)+C(s+3)(s+2)
Sub s=-3; -13=A(-1)(-4); A=-13/4
Sub s=-2; -12=B(1)(-3); B=12/3=4
Sub s=1; 3=C(4)(3); C=1/4
Solving differential equations using
Laplace transforms
𝑠 2 −4𝑠+6 13 1 1 1 1
= - + 4 +
(s+3)(s+2)(𝑠−1) 4 𝑠+3 𝑠+2 4 𝑠−1
𝑠 2 −4𝑠+6 13 1 1 1 1
𝐿−1 =𝐿 −1
− + 4 +
(s+3)(s+2)(𝑠−1) 4 𝑠+3 𝑠+2 4 𝑠−1
13 −1 1 −1 1 1 −1 1
y(t)=- 𝐿 +4 𝐿 + 𝐿
4 𝑠+3 𝑠+2 4 𝑠−1
13 −3𝑡 −2𝑡 1 𝑡
y(t) = - 𝑒 +4 𝑒 + 𝑒
4 4
Solving differential equations using
Laplace transforms
𝑑2 𝑦
• Solve the initial value problem 2 +4y=𝑒 𝑡 ; y(0)=0,y 𝜋
4
=0
𝑑𝑡
Assume solution exists and has a Laplace transform. Let 𝑦 / (0)=a
𝑑2 𝑦 𝑑2 𝑦 1
L +4y =L 𝑒𝑡 ;L + 4L y =
𝑑𝑡 2 𝑑𝑡 2 𝑠−1
2 / 1
𝑠 𝐿 𝑦 − 𝑠𝑦 0 − 𝑦 (0)+4 𝐿 𝑦 = sub y(0)=0, 𝑦 / (0)=a
𝑠−1
2 1 2 1 𝑎𝑠−𝑎+1 𝑎𝑠−𝑎+1
L(y)(𝑠 +4)-0-a= ; L(y)(𝑠 +4)= +a= ; L(y)= 2
𝑠−1 𝑠−1 𝑠−1 (𝑠 +4)(𝑠−1)
𝑎𝑠−𝑎+1 𝐴𝑠+𝐵 𝐶
= 2 +
(𝑠 +4)(𝑠−1) 𝑠 +4
2 𝑠−1
Solving differential equations using
Laplace transforms
𝑎𝑠 − 𝑎 + 1 = (As + B)(s-1)+C(𝑠 2 +4)
Sub s=1; 1= 5C ; C=1/5
Sub s=0; -a+1= -B+4C=-B+4/5; B= 4/5+a-1
Sub s=2; a+1= 2A+B+8C= 2A+ 4/5+a-1+8/5=2A+7/5+a; A=-1/5
𝑎𝑠−𝑎+1 𝐴𝑠+𝐵 𝐶 1 𝑠 1 1 1
= 2 + = - + (4/5+a-1) +
(𝑠 +4)(𝑠−1) 𝑠 +4
2 𝑠−1 2
5 𝑠 +4 𝑠 2 +4 5 𝑠−1
−1 𝑎𝑠−𝑎+1 1 −1 𝑠 −1 1 1 −1 1
𝐿 =- 𝐿 + (4/5+a-1) 𝐿 + 𝐿
(𝑠 2 +4)(𝑠−1) 5 𝑠 2 +4 𝑠2 +4 5 𝑠−1
1 1 1 𝑡
y(t)= - Cos2t+ (4/5+a-1) 𝑆𝑖𝑛2𝑡+ 𝑒
5 2 5
Solving differential equations using
Laplace transforms
𝜋
To determine the unknown use the initial condition y 4
=0
𝜋
1 1 1
y(𝜋4)= - Cos2.𝜋4 + (4/5+a-1) 𝑆𝑖𝑛2. 𝜋4+ 𝑒 4 =0
5 2 5
1 1 𝜋 2 𝜋 1
Therefore 0 + (4/5+a-1) + 𝑒 4 =0 ; a= - 𝑒4+
2 5 5 5
Substituting for a in the solution we have
1 1 𝜋 1 𝑡
y(t)= - Cos2t - 𝑒 𝑆𝑖𝑛2𝑡+ 𝑒
4
5 5 5
Solving integral-differential equations
using Laplace transforms
𝑑𝑦 𝑡 2𝑢
• Solve − 3 0 𝑒 𝑦 𝑡 − 𝑢 𝑑𝑢 =2𝑒 𝑡 ; y(0)=1.
𝑑𝑡
We assume that the equation has a solution and the solution has a Laplace
transform.
𝑡
𝑑𝑦 𝑡 2𝑢 Note that 0 𝑒 2𝑢 𝑦 𝑡 − 𝑢 𝑑𝑢 is the
L − 3 0 𝑒 𝑦 𝑡 − 𝑢 𝑑𝑢 = 2𝐿 𝑒 𝑡 convolution of 𝑒 2𝑡 and y(t). Hence its
𝑑𝑡 Laplace transform is L(𝑒 2𝑡 )L(y).
𝑑𝑦 𝑡 2𝑢 2
L − 3𝐿 0 𝑒 𝑦 𝑡 − 𝑢 𝑑𝑢 =
𝑑𝑡 𝑠−1
2t 2 3 2
sL(y)-y(0)-3L(e )L y = ; sL(y)-1- 𝐿 𝑦 =
𝑠−1 𝑠−2 𝑠−1
3 2 2+𝑠−1 𝑠+1
L(y) 𝑠 − = +1= =
𝑠−2 𝑠−1 𝑠−1 𝑠−1
Solving integral-differential equations
using Laplace transforms
𝑠 𝑠−2 −3 𝑠+1 𝑠2 −2𝑠−3 𝑠+1
L(y) = ; L(y) =
𝑠−2 𝑠−1 𝑠−2 𝑠−1
(𝑠+1) (𝑠−2) (𝑠+1)(𝑠−2) (𝑠−2)
L(y)= = =
(𝑠−1) (𝑠2 −2𝑠−3) (𝑠−1)(𝑠−3)(𝑠+1) (𝑠−1)(𝑠−3)
To find the inverse Laplace transform let
(𝑠−2) 𝐴 𝐵
= + ; 𝑠 − 2 = A (s-3)+B(s-1)
(𝑠−1)(𝑠−3) (𝑠−1) (𝑠−3)
Sub s=1; -1=-2A; A=1/2; Sub s=3; 1=B2; B=1/2
(𝑠−2) 1 1 1 1
= + ;
(𝑠−1)(𝑠−3) 2 (𝑠−1) 2 (𝑠−3)
−1 1 1 1 1 1
therefore y(t)=𝐿 + = 𝑒 𝑡 + 𝑒 3𝑡
2 (𝑠−1) 2 (𝑠−3) 2
Solving simultaneous differential
equation using Laplace transforms
𝑑𝑥 2𝑡 𝑑𝑦
• Solve + y=𝑒 ; + x=𝑒 𝑡 x(0)=0, y(0)=1 assume the solution
𝑑𝑡 𝑑𝑡
exists and have Laplace transform.
𝑑𝑥 2𝑡 1 1
L +y =L 𝑒 ; sL(x)-x(0)+L(y)= ; sL(x)+L(y)= -----(1)
𝑑𝑡 𝑠−2 𝑠−2
𝑑𝑦 𝑡 1 𝑠
L +x =L 𝑒 ; sL(y)-y(0)+L(x)= ; sL(y)+L(x)= -----(2)
𝑑𝑡 𝑠−1 𝑠−1
Solving equation (1) and (2) we have
𝑠 3 −2𝑠 2 −𝑠+1 𝑠
L(y) = and L(x) =
(𝑠−1)2 (𝑠+1)(𝑠−2) (𝑠−1)2 (𝑠+1)(𝑠−2)
Solving simultaneous differential
equation using Laplace transforms
𝑠 3 −2𝑠 2 −𝑠+1 𝐴 𝐵 𝐶 𝐷
• L(y) = = + + +
(𝑠−1)2 (𝑠+1)(𝑠−2) 𝑠−1 2
(𝑠−1) 𝑠+1 𝑠−2
3 1 1 −1
Solving we have A= , B= , C= , D=
4 2 12 3
𝐴 𝐵 𝑐 𝐷 3 1 1 1 1 1 1 1
L(y)= + 2 + + = + 2 - −
𝑠−1 (𝑠−1) 𝑠+1 𝑠−2 4 𝑠−1 2 (𝑠−1) 12 𝑠+1 3 𝑠−2
3 𝑡 1 𝑡 1 −𝑡 1 2𝑡
y(t)= 𝑒 + t𝑒 + 𝑒 - 𝑒
4 2 12 3
𝑠 𝐴 𝐵 𝐶 𝐷
L(x)= 2 = + 2 + +
(𝑠−1) (𝑠+1)(𝑠−2) 𝑠−1 (𝑠−1) 𝑠+1 𝑠−2
Solving simultaneous differential
equation using Laplace transforms
3 1 1 2
• Solving we have A=- , B=- , C= , D=
4 2 12 3
3 1 1 1 1 1 2 1
• L(x)= - − 2 + +
4 𝑠−1 2 (𝑠−1) 12 𝑠+1 3 𝑠−2
3 𝑡 1 1 −𝑡 2 2𝑡
x(t)= - 𝑒 − t𝑒 𝑡 + 𝑒 + 𝑒 and
4 2 12 3
3 𝑡 1 1 −𝑡 1 2𝑡
y(t)= 𝑒 + t𝑒 𝑡 + 𝑒 - 𝑒 is the solution of the
4 2 12 3
system of equations.
Special function and their Laplace
transforms
In certain type of physical and engineering problems one has to deal
with an instantaneous force or voltage acting instantaneously at a certain
time or a concentrated load acting at a point. These are modelled by
functions called special/ generalized functions. We define such special
functions.
Consider the Heaviside’s unit step function H(t). The displaced function
H(t-a) represents H(t) displaced to the right by distance a. Then
L(f(t-a)H(t-a))=𝑒 −𝑎𝑠 𝐿 𝑓 𝑡 = 𝑒 −𝑎𝑠 F(s)
L(f(t)H(t-a))=𝑒 −𝑎𝑠 𝐿 𝑓 𝑡 + 𝑎
Dirac-Delta function
• Dirac-delta Function( Impulse Function):
0 𝑡<𝑎
1
Consider the function ∅(t)=ቐ 𝜖 𝑎 ≤𝑡 ≤𝑎+𝜖
0 𝑡 >𝑎+𝜖
1
1
𝜖 ∅(t)= H(t−a) − H(t−(a+𝜖))
𝜖
a a+𝜖
Dirac-Delta function and its Laplace
transforms
∞ 𝑎+𝜖 1
0 ∅ 𝑡 𝑑𝑡 = 𝑎 𝜖
dt = 1 for all values of 𝜖
Taking limit as 𝜖 → 0 the function ∅(t) tends to infinity at t=a and
zero every where, however its integral is unity.
𝛿 𝑡 − 𝑎 = lim ∅(𝑡)
𝜖→0
represents the force acting for a very short duration at time t=a
∞ 𝑎+𝜖
0 𝛿 𝑡 − 𝑎 𝑑𝑡 = lim ∅ 𝑎 𝑡 𝑑𝑡 = 1
𝜖→0
Properties of Dirac Delta function
∞
1. 0 𝛿 𝑡 − 𝑎 𝑑𝑡 =1
−𝑠𝑎
2. L(𝛿 𝑡 − 𝑎 ) = 𝑒 for a=0 L(𝛿 𝑡 ) = 1. 𝐿−1 𝑒 −𝑠𝑎 = 𝛿 𝑡 − 𝑎
𝐿−1 1 = 𝛿 𝑡
3. 𝛿 𝑡 − 𝑎 =𝐻/ (t-a)
∞
4. 0 𝑓(𝑡) 𝛿 𝑡 − 𝑎 dt = f(a)
−𝑠𝑎
5. L(f(t) 𝛿 𝑡 − 𝑎 )= 𝑒 f(a) 𝐿−1 𝑒 −𝑠𝑎 𝐹(𝑎) = 𝑓(𝑡)𝛿 𝑡 − 𝑎
6. 𝛿 𝑡 − 𝑎 *𝛿 𝑡 − 𝑏 = 𝛿 𝑡 − (𝑎 + 𝑏)
Properties of Dirac Delta function
∞ 𝑎+𝜖 𝑎+𝜖 1
• 1 0 𝛿 𝑡 − 𝑎 𝑑𝑡 = lim ∅ 𝑎 𝑡 𝑑𝑡 = lim 𝑎 𝑑𝑡 =1
𝜖→0 𝜖→0 𝜖
∞ −𝑠𝑡 𝑎+𝜖 −𝑠𝑡 1
• 2.L(𝛿 𝑡 − 𝑎 )=0 𝑒 𝛿 𝑡−𝑎 dt= lim 𝑒 𝑎 dt
𝜖→0 𝜖
1 𝑒 −𝑠𝑡 𝑡 =𝑎+𝜖 1
= lim ฬ = lim (𝑒 −𝑠(𝑎+𝜖) − 𝑒 −𝑠𝑎 )
𝜖→0 𝜖 −𝑠 𝑡=𝑎 𝜖→0 −𝑠𝜖
𝑒 −𝑠𝑎 1− 𝑒 −𝑠𝜖 −𝑠𝑎 1−𝑒 −𝑎𝑥
= lim =𝑒 lim
𝑥→0 𝑥
=a
𝑠 𝜖→0 𝜖
For a=0; L(𝛿 𝑡 )= 1
Properties of Dirac Delta function
H(t−a) − H(t−(a+ε))
• 3 𝛿 𝑡 − 𝑎 = lim ∅(𝑡)= lim = 𝐻/ (t-a)
𝜖→0 𝜖→0 𝜖
∞ 𝑎+𝜖
• 4 0 𝑓(𝑡)𝛿 𝑡 − 𝑎 𝑑𝑡 = lim ∅)𝑡(𝑓 𝑎 𝑡 𝑑𝑡
𝜖→0
1 𝑎+𝜖
= lim 𝑎 𝑓 𝑡 𝑑𝑡 = f(a) by Mean value theorem.
𝜖→0𝜖
∞ −𝑠𝑡 𝑎+𝜖 −𝑠𝑡
• 5 L(f(t) 𝛿 𝑡 − 𝑎 )=0 𝑒 f(t)𝛿 𝑡 − 𝑎 𝑑𝑡 = lim ∅)𝑡(𝑓 𝑒 𝑎 𝑡 𝑑𝑡
𝜖→0
1 𝑎+𝜖 −𝑠𝑡
= lim 𝑒 𝑓(𝑡) 𝑑𝑡 = 𝑒 −𝑠𝑎 𝑓 𝑎 by Mean Value theorem
𝜖→0 𝜖 𝑎
Properties of Dirac Delta function
• 6 L(𝛿 𝑡 − 𝑎 *𝛿 𝑡 − 𝑏 )=L(𝛿 𝑡 − 𝑎 )L (𝛿 𝑡 − 𝑏 )
= 𝑒 −𝑠𝑎 𝑒 −𝑠𝑎 = 𝑒 −𝑠(𝑎+𝑏) = L(𝛿 𝑡 − (𝑎 + 𝑏 ))
Therefore 𝛿 𝑡 − 𝑎 * 𝛿 𝑡 − 𝑏 = 𝛿 𝑡 − (𝑎 + 𝑏)
Computation of Laplace transform
Special Functions
• Find the Laplace transforms of 𝑡 2 H(t-1)+Cos2t 𝛿 𝑡 − 𝜋
L(𝑡 2 H(t-1)+Cos2t 𝛿 𝑡 − 𝜋 )=𝑒 −𝑠 𝐿 (𝑡 + 1) 2 +L Cos2t 𝛿 𝑡 − 𝜋
= 𝑒 −𝑠 𝐿 𝑡 2 +2t+1 + 𝑒 −𝜋𝑠 Cos2𝜋
2 1 1
= 𝑒 −𝑠 + 2 2 + + 𝑒 −𝜋𝑠 L(f(t) 𝛿 𝑡 − 𝑎 )= 𝑒 −𝑠𝑎 f(a)
𝑠3 𝑠 𝑠
−2𝑠 𝑠
• Find the inverse Laplace transform of 𝑒 +2 𝑒 −𝑠 + 3𝑒 −3 𝑒 −3𝑠
𝑠2 +4
−1 −2𝑠 𝑠 −𝑠 −3 −3𝑠 𝐿−1 𝑒 −𝑠𝑎 = 𝛿 𝑡 − 𝑎
𝐿 𝑒 +2𝑒 + 3𝑒 𝑒 𝐿−1 1 = 𝛿 𝑡
𝑠2 +4
=H(t-2)Cos2(t-2)+2 𝐿−1 𝑒 −𝑠 +3 𝐿−1 𝑒 −3 𝑒 −3𝑠
𝐿−1 𝑒 −𝑠𝑎 𝑓(𝑎) = 𝑓(𝑡)𝛿 𝑡 − 𝑎
= H(t-2)Cos2(t-2)+2𝛿 𝑡 − 1 +3 𝑒 −𝑡 𝛿 𝑡 − 3
Solving differential equations involving
Special functions
𝑑2 𝑦 𝑑𝑦
• Solve the equation + 3 - 4y = 2𝑒 𝑡 𝛿 𝑡 − 1 ; y(0)=1,𝑦 / 0 = 1
𝑑𝑡 2 𝑑𝑡
We assume the equation has a solution whose Laplace transform exists.
𝑑2 𝑦 𝑑𝑦
L 2 +3 −4y =L 2𝑒 𝑡 𝛿 𝑡 − 1
𝑑𝑡 𝑑𝑡
𝑠 𝐿 𝑦 − 𝑠𝑦 0 − 𝑦 / (0)+3(s 𝐿 𝑦 − 𝑦 0 )-4L(y)=2 𝑒 1 𝑒 −𝑠
2