0% found this document useful (0 votes)
40 views22 pages

Monopole Calculation Memory 24

This document presents the structural design of a 24-meter tall metal monopole. It describes the structure, materials, loads considered such as wind and self-weight, and design criteria according to standards such as AISC and TIA/EIA-222-F. The analysis is performed using the allowable stress method and considers maximum deformations, load combinations, and service parameters for the tower.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
40 views22 pages

Monopole Calculation Memory 24

This document presents the structural design of a 24-meter tall metal monopole. It describes the structure, materials, loads considered such as wind and self-weight, and design criteria according to standards such as AISC and TIA/EIA-222-F. The analysis is performed using the allowable stress method and considers maximum deformations, load combinations, and service parameters for the tower.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 22

STRUCTURAL DESIGN

METALOPOLY

24.00m

100km/h
75 km/h
INDEX

1. SCOPE ............................................................................................................................................3
2. DESCRIPTION FROM THE STRUCTURE
3. RULES OF DESIGN
4. MATERIALS 7
5. METHODOLOGY OF ANALYSIS
6. LOADS OF DESIGN
6.1 CARGAS PERMANENTES ....................................................................................................................8
6.2 EVENTUAL LOADS ........................................................................................................................8
7. DEFORMATIONS 8
8. COMBINATIONS LOAD................................................................................................................9
9. DATA PROGRAM ENTRY ....................................................................................................9
9.1 GGEOMETRY.
9.2 ANTENNA LOADS
9.3 LOADS
10. EVALUATION OF THE TOWER ............................................................................................................16
10.1 SURVIVAL DESIGN: WIND SPEED 100KM/H16
10.2 DESIGN BY OPERATION: WIND SPEED 90KM/H19
11. REACTIONS AT THE BASE ...............................................................................................................20
12. CONCLUSIONS..............................................................................................................................20
CALCULATION BASES AND STRUCTURING

1. SCOPE

This calculation report describes the criteria adopted for the structural design of
a metal monopole of 24.00 m. The Ms-Tower program has been used

The materials used, the loads considered, and their


combinations, method of analysis, the rules and codes that will be used in the present
report.

2. DESCRIPTION OF THE STRUCTURE

The type of structure is a 24.00 m high monopole embedded at its base, the structure
It is a dodecagonal frustum and consists of 4 sections of 6m in length each.

The general dimensions of the structure are as follows:

Section 1 (0.00 m - 6.00 m):


Truncated conical section,
98.80 cm
Sheet thickness = 1/4"

Section 2 (6.00 m - 12.00 m):


Truncated cone section,
86.60 cm
Thickness of the plate = 1/4"

Segment 3 (12.00 m - 18.00 m):


Truncated conical section,
74.40 cm
Sheet thickness = 3/16"

Section 4 (18.00 m–24.00 m):


Truncated conical section,
62.20 cm
Thickness of the plate = 3/16”
3. DESIGN STANDARDS

The standards considered in the evaluation of the tower are as follows:

Structural Standards for Steel Antenna Towers and Antenna Supporting Structures
TIA/EIA-F 1996.

National Building Regulations 2006: E -020 Loads

National Building Regulations 2006: E–090 Metal Structures.

For the design of the tower elements, we will use the American Code of
Telecommunications TIA/EIA–222–F, in which in its chapter 3, numeral 3.1.14.1 accepts the
use of permissible stresses according to the standards set by the American Institute of Steel
Construction (AISC).

In that case, it will not be necessary to apply safety coefficients to the acting loads, as the
The formulas for allowable stresses established in the AISC already have safety factors.
that reduce their value and that are based on the slenderness of their members.

The formulas used are found in sections 1.5.1.3.1 and 1.5.1.3.2 of the AISC manual.
being these the following:

When ∗ ≤

( 2)
[1 -
2 2] ∗

=
5 3 * () ( )3
3 + 8Cc −
8CC3
When ∗ / ≥

12∗ 2
=
23 * ( )2

2 2
Where: =√

As for the slenderness ratio, it will be considered that k*l/r < 200 at maximum.

For this type of structures, k = 1.0 is assumed, the ends of the elements are modeled as
articulated.

The formulas for tensile stresses: Ft <= 0.6 x Fy

The TIA/EIA–222–F standards in their numeral 3.1.1.1 establish that for tall structures
less than 213 m as in the present case, the allowable stresses obtained according to the AISC
they can be increased by 1/3, which will be taken into account when designing the elements.

Regarding the slenderness ratio for members in compression, in numeral 3.1.12


consider a maximum kl/r < 150 for the vertical elements, kl/r < 200 for the bracing elements
y Kl/r < 250 for redundant elements or members in compression that have not been
calculated. For this type of structures, K = 1.0 is assumed.

For the structural design, the mathematical model was prepared in the Ms Tower program, with the
geometry, characteristics and properties required to represent the structure in the manner
as real as possible.

i. AISC. “Specifications for structural steel buildings – Allowable stress design and
plastic design, 2010.

ii. TIA/EIA 222– F. "Structural Standards for steel antenna towers and antenna"
supporting structures,” June 1996
4. MATERIALS

The materials used are the following:

The profiles that make up the tower structure are made of ASTM A-36 steel.

The structural and geometric characteristics used for the structural design of the tower
son

Steel angle profiles with a minimum yield strength of fy = 2530 Kg/cm2,


ASTM A36.

High strength bolts ASTM A325, for connection between tower bodies.

Anchor bolts of Ø1 1/4” SAE 1020 material.

Welding AWS E60XX.

5. ANALYSIS METHODOLOGY

The structural design was carried out considering the Allowable Stress Design Method (ASD), under
the assumption of small deformations so that the structure behaves under the theory
linear elastic.
6. DESIGN LOADS

6.1 PERMANENT LOADS


Self-weight (PP): For the calculation of the self-weight of the elements, the weight was considered

of all the metallic elements forming the tower, rest platforms,


metal supports for antennas, splices, etc.

6.2 OCCASIONAL LOADS


Wind (W): In accordance with Annex 2 of the E.020 standard of the National Regulation
Buildings, the design or survival wind is 100 km/h at 10 m height.
regarding ground level, while the operational wind will be 90 km/h at the
same height.

Earthquake (E): It is not considered since the action of the wind is predominant over the action.

seismic for this type of structure.

7. DEFORMATIONS
The maximum deformation of the structure will be considered at the value measured at the apex of the
tower, recommended by the TIA-EIA-222-F. The maximum displacements will be measured at
an operating speed of 90 km/h.

The service or operation parameters of the tower are as follows:

0.75°

Maximum Torsion: 0.30°


8. LOAD COMBINATIONS

To obtain the load combinations that will be used in the analysis of the structure, it is necessary to
comply with what is stated in the AISC standards (ASD 2010).

Do (Dead Load) + Wi (Wind Load)

9. PROGRAM ENTRY DATA

9.1 GEOMETRY
TITL1 MONOPOLY 24
CLEAR TITLE 2

UNITS 1
PROFILE
FACES 1

WBASE 0.988
RLBAS 1.000
PANEL 1 HT 0.5000 TW 0.5051
FACE SH4 LEG 1 R1 37
PANEL 2 HT 0.5000 TW 0.5153
FACE SH4 LEG 2 R1 37
PANEL 3 HT 0.5000 TW 0.5254
FACE SH4 LEG 3 R1 37
PANEL 4 HT 0.5000 TW 0.5356
FACE SH4 LEG 4 R1 37
PANEL 5 HT 0.5000 TW 0.5458
FACE SH4 LEG 5 R1 37
PANEL 6 HT 0.5000 TW 0.5559
FACE SH4 LEG 6 R1 37
PANEL 7 HT 0.5000 TW 0.5661
FACE SH4 LEG 7 R1 37
PANEL 8 HT 0.5000 TW 0.5763
FACE SH4 LEG 8 R1 37
PANEL 9 HT 0.5000 TW 0.5864
FACE SH4 LEG 9 R1 37
PANEL 10 HT 0.5000 TW 0.5966
FACE SH4 LEG 10 R1 37
PANEL 11 HT 0.5000 TW 0.6068
FACE SH4 LEG 11 R1 37
PANEL 12 HT 0.5000 TW 0.6169
FACE SH4 LEG 12 R1 37
PANEL 13 HT 0.6667 TW 0.6288
FACE SH4 LEG 13 R1 37
PANEL 14 HT 0.6667 TW 0.6423
FACE SH4 LEG 14 R1 37
PANEL 15 HT 0.6667 TW 0.6559
FACE SH4 LEG 15 R1 37
PANEL 16 HT 0.6667 TW 0.6694
FACE SH4 LEG 16 R1 37
PANEL 17 HT 0.6667 TW 0.6830
FACE SH4 LEG 17 R1 37
PANEL 18 HT 0.6667 TW 0.6966
FACE SH4 LEG 18 R1 37
PANEL 19 HT 0.6667 TW 0.7101
FACE SH4 LEG 19 R1 37
PANEL 20 HT 0.6667 TW 0.7237
FACE SH4 LEG 20 R1 37
PANEL 21 HT 0.6667 TW 0.7372
FACE SH4 LEG 21 R1 37
PANEL 22 HT 0.7500 TW 0.7516
FACE SH4 LEG 22 R1 37
PANEL 23 HT 0.7500 TW 0.7669
FACE SH4 LEG 23 R1 37
PANEL 24 HT 0.7500 TW 0.7821
FACE SH4 LEG 24 R1 37
PANEL 25 HT 0.7500 TW 0.7974
FACE SH4 LEG 25 R1 37
PANEL 26 HT 0.7500 TW 0.8126
FACE SH4 LEG 26 R1 37
PANEL 27 HT 0.7500 TW 0.8279
FACE SH4 LEG 27 R1 37
PANEL 28 HT 0.7500 TW 0.8431
FACE SH4 LEG 28 R1 37
PANEL 29 HT 0.7500 TW 0.8584
FACE SH4 LEG 29 R1 37
PANEL 30 HT 1.0000 TW 0.8762
FACE SH4 LEG 30 R1 37
PANEL 31 HT 1.0000 TW 0.8965
FACE SH4 LEG 31 R1 37
PANEL 32 HT 1.0000 TW 0.9168
FACE SH4 LEG 32 R1 37
PANEL 33 HT 1.0000 TW 0.9372
FACE SH4 LEG 33 R1 37
PANEL 34 HT 1.0000 TW 0.9575
FACE SH4 LEG 34 R1 37
PANEL 35 HT 1.0000 TW 0.9778
FACE SH4 LEG 35 R1 37
PANEL 36 HT 0.0000 TW 0.9880
FACE SH4 LEG 36 R1 37
END
SECTIONS
MONOPOLY LIB 2
1 PG1.505x5 FY 250.00
2 PG2.515x5 FY 250.00
3 PG3.525x5 FY 250.00
4 PG4.536x5 FY 250.00
5 PG5.546x5 FY 250.00
6 PG6.556x5 FY 250.00
7 PG7.566x5 FY 250.00
8 PG8.576x5 FY 250.00
9 PG9.586x5 FY 250.00
10 PG10.597x5 FY 250.00
11 PG11.607x5 FY 250.00
12 PG12.617x5 FY 250.00
13 PG13.629x5 FY 250.00
14 PG14.642x5 FY 250.00
15 PG15.656x5 FY 250.00
16 PG16.669x5 FY 250.00
17 PG17.683x5 FY 250.00
18 PG18.697x5 FY 250.00
19 PG19.710x5 FY 250.00
20 PG20.724x5 FY 250.00
21 PG21.737x5 FY 250.00
22 PG22.752x6 FY 250.00
23 PG23.767x6 FY 250.00
24 PG24.782x6 FY 250.00
25 PG25.797x6 FY 250.00
26 PG26.813x6 FY 250.00
27 PG27.828x6 FY 250.00
28 PG28.843x6 FY 250.00
29 PG29.858x6 FY 250.00
30 PG30.876x6 FY 250.00
31 PG31.897x6 FY 250.00
32 PG32.917x6 FY 250.00
33 PG33.937x6 FY 250.00
34 PG34.958x6 FY 250.00
35 PG35.978x6 FY 250.00
36 PG36.988x6 FY 250.00
37 DUMMY FY 250.00
END

SUPPORT
COORD 0.0 0.0 1,000 FIXED
END

9.2 ANTENNA LOADS

The dimensions of the antennas that were considered in the design were
following:

Loaded to the limit:

-12 RRUS with dimensions 40x30x15cm and weight 25kg each at maximum.
-03 RF antennas measuring 2.6 x 0.55 x 0.15 meters and weighing 80 kg each at the limit.
-01 MW antenna with a diameter of 0.6 meters and a weight of 50 kg.
-01 Radomo h=3.3 m x d=2.7 m (Persian-type Polymer + Metal Structures)

Loads at 5 meters below the top (possible co-location):

-12 RRUS with dimensions 40x30x15cm and weight 25kg each.


-03 RF antennas of 2.6 x 0.55 x 0.15 meters and weight 80kg each.
-01 MW antenna with a diameter of 0.6 meters and a weight of 50 kg.
-01 Radome h=3.3 m x d=2.7 m (Persianized Polymer + Metal Structures)

-2 metal platforms for equipment at a height of 15m.


$ MONOPOLY 24.00 M - Loading File
$ EIA 222F
PARAMETERS

ANGN 0.00 Angle Anti-clockwise from X axis to North


CODE EIA222 $ WIND PROFILE TO THIS CODE
ICE 0.0 For icing
ALTOP 0 $ SITE + TOWER HEIGHT for icing
PSF-V 1.20 Partial safety factor for wind speed, BS8100
PSF-M 1.20 Partial safety factor for Material strength, BS8100
VB 27.78 120km/h
25.00 m/s = 90 km/h

END

OVERLAP 1 Allow for the overlap of members


TERRAIN
ANGLE 0 TCAT 2 $ HH 0.0 BETAH 0.0 XLEE 0.0
END

LOADS

CASE 100 Weight of tower plus ancillaries


DL
$TODO - any additional NDLDs go here

CASE 200 wind at 0 to X axis


WL ANGLX 0.0 NOICE

CASE 220 wind at 45 to X axis


WL ANGLX 45.0 NOISE

CASE 240 wind at 90 to X axis


WL ANGLX 90.0 NOICE

CASE 260 wind at 135 to X axis


WL ANGLX 135.0 NOICE

CASE 280 wind at 180 to X axis


WL ANGLX 180.0 NOISE

CASE 300 wind at 225 to X axis


WL ANGLX 225.0 NOISE

CASE 320 wind at 270 to X axis


WL ANGLX 270.0 NOISE

CASE 340 wind at 315 to X axis


WL ANGLX 315.0 NOISE

CASE 500 LOAD: wind at 0 to X axis


COMBIN 100 1.2
COMBIN 200 1.0

CASE 520 LOAD: wind at 45 to X axis


COMBIN 100 1.2
COMBIN 220 1.0

CASE 540 LOAD: wind at 90 to X axis


COMBIN 100 1.2
COMBIN 240 1.0
CASE 560 LOAD: wind at 135 to X axis
COMBIN 100 1.2
COMBIN 260 1.0

CASE 580 LOAD: wind at 180 to X axis


COMBIN 100 1.2
COMBIN 280 1.0

CASE 600 LOAD: wind at 225 to X axis


COMBIN 100 1.2
COMBIN 300 1.0

CASE 620 LOAD: wind at 270 to X axis


COMBIN 100 1.2
COMBIN 320 1.0

CASE 640 LOAD: wind at 315 to X axis


COMBIN 100 1.2
COMBIN 340 1.0

END

ANCILLARIES

$ DUMMY ENTRIES FOR GUIDANCE ONLY


LARGE LIBR P:ANC.LIB $ use ANC.LIB if library is in DATA area

------------------------ MIMETIZED ----------------------------

MIME-2 XA 0.00 YA 0.00 ZA 22.30 lib CYLINDER4 ANG 0 ATTACH 1 2 4 5 FACT 1

MIME-3 XA 0.00 YA 0.00 ZA 18.70 lib CYLINDER4 ANG 0 ATTACH 1 2 4 5 FACT 1

------------------------ REST PLATFORM ----------------------------

PLATAF-1 XA 00.00 YA -0.70 ZA 15.00 lib PLATFORM-1 ANG 0 ATTACH 1 2 4 5 FACT 1


PLATAF-2 XA 0.00 YA 0.70 ZA 15.00 lib PLATFORM-1 ANG 0 ATTACH 1 2 4 5 FACT 1

$------------------------ MW ANTENNAS ----------------------------

MW-1 XA -0.50 YA 0.00 ZA 19.80 LIB ANTMW60 ANG 180 $ D = 0.60 M

MW-3 XA -0.50 YA 0.00 ZA 16.20 LIB ANTMW60 ANG 180 $ D = 0.60 M

$------------------------ RF ANTENNAS ----------------------------

RF-1 XA 0.70 YA 0.00 ZA 22.50 LIB ANTRF2.6 ANG 0


RF-2 XA -0.35 YA 0.61 ZA 22.50 LIB ANTRF2.6 ANG 240
RF-3 XA -0.35 YA -0.61 ZA 22.50 LIB ANTRF2.6 ANG 120

RF-4 XA 0.70 YA 0.00 ZA 18.90 LIB ANTRF2.6 ANG 0


RF-5 XA -0.35 YA 0.61 ZA 18.90 LIB ANTRF2.6 ANG 240
RF-6 XA -0.35 YA 120

$------------------------ RRU ANTENNAS ----------------------------

RRU-1 XA 0.50 YA -0.15 ZA 22.80 LIB ANTRRU-1 ANG 0


RRU-2 XA 0.50 YA 0.15 ZA 22.80 LIB ANTRRU-1 ANG 0
RRU-3 XA 0.50 YA -0.15 ZA 22.20 LIB ANTRRU-1 ANG 0
RRU-4 XA 0.50 YA 0.15 ZA 22.20 LIB ANTRRU-1 ANG 0
RRU-5 XA -0.12 YA 0.51 ZA 22.80 LIB ANTRRU-1 ANG 240
RRU-6 XA -0.38 YA 0.36 ZA 22.80 LIB ANTRRU-1 ANG 240
RRU-7 XA -0.12 YA 0.51 ZA 22.20 LIB ANTRRU-1 ANG 240
RRU-8 XA -0.38 YA 0.36 ZA 22.20 LIB ANTRRU-1 ANG 240

RRU-9 XA -0.12 YA -0.51 ZA 22.80 LIB ANTRRU-1 ANG 120


RRU-10 XA -0.38 YA -0.36 ZA 22.80 LIB ANTRRU-1 ANG 120
RRU-11 XA -0.12 YA -0.51 ZA 22.20 LIB ANTRRU-1 ANG 120
RRU-12 XA -0.38 YA -0.36 ZA 22.20 LIB ANTRRU-1 ANG 120

RRU-13 XA 0.50 YA -0.15 ZA 19.20 LIB ANTRRU-1 ANG 0


RRU-14 XA 0.50 YA 0.15 ZA 19.20 LIB ANTRRU-1 ANG 0
RRU-15 XA 0.50 YA -0.15 ZA 18.60 LIB ANTRRU-1 ANG 0
RRU-16 XA 0.50 YA 0.15 ZA 18.60 LIB ANTRRU-1 ANG 0

RRU-17 XA -0.12 YA 0.51 ZA 19.20 LIB ANTRRU-1 ANG 240


RRU-18 XA -0.38 YA 0.36 ZA 19.20 LIB ANTRRU-1 ANG 240
RRU-19 XA -0.12 YA 0.51 ZA 18.60 LIB ANTRRU-1 ANG 240
RRU-20 XA -0.38 YA 0.36 ZA 18.60 LIB ANTRRU-1 ANG 240

RRU-21 XA -0.12 YA -0.51 ZA 19.20 LIB ANTRRU-1 ANG 120


RRU-22 XA -0.38 YA -0.36 ZA 19.20 LIB ANTRRU-1 ANG 120
RRU-23 XA -0.12 YA -0.51 ZA 18.60 LIB ANTRRU-1 ANG 120
RRU-24 XA -0.38 YA -0.36 ZA 18.60 LIB ANTRRU-1 ANG 120

LINEAR LIBR P:LIN.LIB $ use LIN.LIB if library in DATA area

END
END
Figure No. 1. Main view of antenna loads on the structure.
10. EVALUATION OF THE TOWER

10.1 SURVIVAL DESIGN: WIND SPEED 100KM/H

Figure No. 2. Main view of stress ratios in the structure.


MSTOWER V6 Member checking to EIA-222-F (080218)

MONOPOLO 24 CLEAR 3
20-JUL-18 12:35:07

MONOPOLY 24
CLEAR

-- L O A D C A S E S --
Case Y/N Title
100 Y Weight of tower plus ancillaries
200 Y WIND AT 0 TO X AXIS
220 Y WIND AT 45 TO X AXIS
240 Y WIND AT 90 TO X AXIS
260 Y WIND AT 135 TO X AXIS
280 Y WIND AT 180 TO X AXIS
300 Y WIND AT 225 TO X AXIS
320 Y WIND AT 270 TO X AXIS
340 Y WIND AT 315 TO X AXIS
500 Y LOAD: WIND AT 0 TO X AXIS
520 Y LOAD: WIND AT 45 TO X AXIS
540 Y LOAD: WIND AT 90 TO X AXIS
560 Y LOAD: WIND AT 135 TO X AXIS
580 Y LOAD: WIND AT 180 TO X AXIS
600 Y LOAD: WIND AT 225 TO X AXIS
620 Y LOAD: WIND AT 270 TO X AXIS
640 Y LOAD: WIND AT 315 TO X AXIS

Y = Cases to be checked
N = Not Used

Report Units:
Dims., lengths, areas ... mm, mm2
Forces ..................... kN
Moments, Torques ........... kNm
Stresses ..............N/mm2 (MPa)

Cantilevered pole
Computed capacities assume pole is predominantly subject to bending.

Allowable stresses to EIA-222-F. Overstress factor for WL: 1.330


Symbols:
fy = yield stress
P = Axial force in member, c=compression
Moment
f = Axial stress in member
Allowable stress
* = Stress ratio, f/F > 1.0

NB: The design approach of EIA-222-F is based on working stress methods.

Shaft Members - Cross-section: 12 sided polygon

Memb Ht D t fy LC P Mx My Mr T fa fb Fa Fb Ft ratio
1 4.8 250.0 620 11 48 0 48 0 1.4 51.3 199.5 199.5 0 0.264
101 24.00 515.2 4.8 250.0 620 11 41 0 41 0 1.4 41.7 199.5 199.5 0 0.216
201 23.50 525.4 4.8 250.0 620 13 33 0 33 0 1.7 32.6 199.5 199.5 0 0.172
301 23.00 535.6 4.8 250.0 500 16 0 24 24 0 2.0 22.6 199.5 199.5 0 0.124
401 22.50 545.8 4.8 250.0 500 19 0 14 14 0 2.2 12.9 199.5 199.5 0 0.076
501 22.00 555.9 4.8 250.0 640 19 3 3 4 0 2.3 3.9 199.5 199.5 0 0.031
601 21.50 566.1 4.8 250.0 500 20 0 6 6 0 2.3 5.1 199.5 199.5 0 0.037
701 21.00 576.2 4.8 250.0 500 20 0 16 16 0 2.3 13.2 199.5 199.5 0 0.078
801 20.50 586.4 4.8 250.0 500 21 0 27 27 0 2.3 20.9 199.5 199.5 0 0.116
901 4.8 250.0 500 21 0 37 37 0 2.4 28.1 199.5 199.5 0 0.153
1001 19.50 606.8 4.8 250.0 500 26 0 49 49 0 2.9 36.0 199.5 199.5 0 0.195
1101 19.00 616.9 4.8 250.0 500 29 0 62 62 0 3.0 43.8 199.5 199.5 0 0.235
1201 18.33 628.8 4.8 250.0 500 29 0 79 79 0 3.0 53.8 199.5 199.5 0 0.285
1301 17.67 642.3 4.8 250.0 500 30 0 96 96 0 3.1 63.2 199.5 199.5 0 0.332
1401 17.00 655.9 4.8 250.0 500 31 0 114 114 0 3.1 71.6 199.5 199.5 0 0.375
1501 16.33 669.4 4.8 250.0 500 32 0 132 132 0 3.1 79.5 199.5 199.5 0 0.414
1601 15.67 683.0 4.8 250.0 500 32 0 150 150 0 3.1 86.9 199.5 199.5 0 0.451
1701 15.00 696.6 4.8 250.0 500 33 0 169 169 0 3.1 93.8 199.5 199.5 0 0.486
1801 4.8 250.0 500 34 0 188 188 0 3.1 100.3 199.5 199.5 0 0.518
1901 4.8 250.0 500 34 0 207 207 0 3.1 106.3 199.5 199.5 0 0.549
2001 13.00 737.2 4.8 250.0 500 35 0 226 226 0 3.1 112.0 199.5 199.5 0 0.577
2101 12.25 751.6 6.3 250.0 500 36 0 248 248 0 2.3 89.2 199.5 199.5 0 0.459
2201 11.50 766.9 6.3 250.0 500 37 0 271 271 0 2.4 93.5 199.5 199.5 0 0.480
2301 6.3 250.0 500 38 0 294 294 0 2.4 97.4 199.5 199.5 0 0.500
2401 10.00 797.4 6.3 250.0 500 39 0 317 317 0 2.4 101.1 199.5 199.5 0 0.519
2501 9.25 812.6 6.3 250.0 500 40 0 340 340 0 2.4 104.6 199.5 199.5 0 0.536
2601 8.50 827.9 6.3 250.0 500 41 0 364 364 0 2.5 107.8 199.5 199.5 0 0.553
2701 7.75 843.1 6.3 250.0 500 42 0 389 389 0 2.5 110.8 199.5 199.5 0 0.568
2801 7.00 858.4 6.3 250.0 500 44 0 414 414 0 2.5 113.7 199.5 199.5 0 0.583
2901 6.00 876.2 6.3 250.0 500 45 0 447 447 0 2.5 118.0 199.5 199.5 0 0.604
3001 5.00 896.5 6.3 250.0 500 47 0 482 482 0 2.6 121.3 199.5 199.5 0 0.621
3101 4.00 916.8 6.3 250.0 500 48 0 517 517 0 2.6 124.4 199.5 199.5 0 0.636
3201 3.00 937.2 6.3 250.0 500 50 0 553 553 0 2.6 127.2 199.5 199.5 0 0.651
3301 2.00 957.5 6.3 250.0 500 52 0 589 589 0 2.7 129.9 199.5 199.5 0 0.665
3401 1.00 977.8 6.3 250.0 500 54 0 627 627 0 2.7 132.4 199.5 199.5 0 0.677

Mass Summary
Sect Size fy L (m) M (kg)
1 PG1.505X5 And 250 0.50 30.06
2 PG2.515X5 Y 250 0.50 30.67
3 PG3.525X5 And 250 0.50 31.28
4 PG4.536X5 And 250 0.50 31.89
5 PG5.546X5 Y 250 0.50 32.50
6 PG6.556X5 Y 250 0.50 33.11
7 PG7.566X5 Y 250 0.50 33.72
8 PG8.576X5 Y 250 0.50 34.33
9 PG9.586X5 And 250 0.50 34.94
10 PG10.597X5 And 250 0.50 35.55
11 PG11.607X5 And 250 0.50 36.16
12 PG12.617X5 Y 250 0.50 36.77
13 PG13.629X5 And 250 0.67 49.98
14 PG14.642X5 And 250 0.67 51.07
15 PG15.656X5 And 250 0.67 52.16
16 PG16.669X5 And 250 0.67 53.24
17 PG17.683X5 And 250 0.67 54.33
18 PG18.697X5 And 250 0.67 55.41
19 PG19.710X5 Y 250 0.67 56.50
20 PG20.724X5 And 250 0.67 57.59
21 PG21.737X5 And 250 0.67 58.67
22 PG22.752X6 And 250 0.75 89.59
23 PG23.767X6 And 250 0.75 91.42
24 PG24.782X6 Y 250 0.75 93.26
25 PG25.797X6 And 250 0.75 95.09
26 PG26.813X6 And 250 0.75 96.92
27 PG27.828X6 And 250 0.75 98.76
28 PG28.843X6 Y 250 0.75 100.59
29 PG29.858X6 Y 250 0.75 102.42
30 PG30.876X6 Y 250 1.00 139.41
31 PG31.897X6 And 250 1.00 142.67
32 PG32.917X6 Y 250 1.00 145.93
33 PG33.937X6 Y 250 1.00 149.19
34 PG34.958X6 And 250 1.00 152.45
35 PG35.978X6 And 250 1.00 155.71
37 DUMMY Y 250 51.74 5.10
--------
2548.44
10.2 DESIGN BY OPERATION: WIND SPEED 90KM/H

Figure No. 3. Displacements at the top of the tower.

Maximum displacement:√0.19672+ 0.000020.1967 m


0.1967
Maximum deflection:
24.00
∗180≈ 0.46°

Maximum rotation:0.00004 ∗ 180≈ 0.002°


11. REACTIONS IN THE BASE

Mstower V6 Reactions (060619)

MONOPOLO 24
CLEAR

-- L O A D C A S E S --
Case Yes/No Title
100 Y WEIGHT OF TOWER PLUS ANCILLARIES
200 Y WIND AT 0 TO X AXIS
220 Y WIND AT 45 TO X AXIS
240 WIND AT 90 TO X AXIS
260 Y WIND AT 135 TO X AXIS
280 Y wind at 180 to X axis
300 Y wind at 225 to X axis
320 Y wind at 270 to X axis
340 Y wind at 315 to X axis
500 AND LOAD: WIND AT 0 TO X AXIS
520 AND LOAD: WIND AT 45 TO X AXIS
540 AND LOAD: WIND AT 90 TO X AXIS
560 AND LOAD: WIND AT 135 TO X AXIS
580 AND LOAD: WIND AT 180 TO X AXIS
600 AND LOAD: WIND AT 225 TO X AXIS
620 AND LOAD: WIND AT 270 TO X AXIS
640 AND LOAD: WIND AT 315 TO X AXIS

Y = Cases to be checked
N = Not Used

Centroid of supports: 0.000 0.000 1.000

SUPPORT REACTIONS (Applied to tower)


Case Node FX FY FZ MX MY MZ
100 3402 0.000 0.000 45.579 0.000 0.630 0.000
Resultant 0.000 0.000 45.579 0.000 0.630 0.000 at centroid

200 3402 37.873 0.000 0.000 0.000 626.179 0.000


Resultant 37.873 0.000 0.000 0.000 626.179 0.000 at centroid

220 3402 26.721 26.550 0.000 -438.187 441.502 -0.119


Resultant 26.721 26.550 0.000 -438.187 441.502 -0.119 at centroid

240 3402 0.032 37.765 0.000 -624.074 0.631 0.072


Resultant 0.032 37.765 0.000 -624.074 0.631 0.072 at centroid

260 3402 -26.786 26.556 0.000 -438.292 -442.765 -0.122


Resultant -26.786 26.556 0.000 -438.292 -442.765 -0.122 at centroid

280 3402 -37.947 0.000 0.000 0.000 -627.610 0.000


Resultant -37.947 0.000 0.000 0.000 -627.610 0.000 at centroid

300 3402 -26.786 -26.556 0.000 438.292 -442.765 0.122


Resultant -26.786 -26.556 0.000 438.292 -442.765 0.122 at centroid

320 3402 0.032 -37.765 0.000 624.074 0.631 -0.072


Resultant 0.032 0.000 624.074 0.631 -0.072 at centroid
340 3402 26.721 -26.550 0.000 438.187 441.502 0.119
Resultant 26.721 -26.550 0.000 438.187 441.502 0.119 at centroid

500 3402 37.873 0.000 54.695 0.000 626.935 0.000


Resultant 37.873 0.000 54.695 0.000 626.935 0.000 at centroid

520 3402 26.721 26.550 54.695 -438.187 442.258 -0.119


Resultant 26.721 26.550 54.695 -438.187 442.258 -0.119 at centroid

540 3402 0.032 37.765 54.695 -624.074 1.387 0.072


Resultant 0.032 37.765 54.695 -624.074 1.387 0.072 at centroid

560 3402 -26.786 26.556 54.695 -438.292 -442.009 -0.122


Resultant -26.786 26.556 54.695 -438.292 -442.009 -0.122 at centroid

580 3402 -37.947 0.000 54.695 0.000 -626.854 0.000


Resultant -37.947 0.000 54.695 0.000 -626.854 0.000 at centroid

600 3402 -26.786 -26.556 54.695 438.292 -442.009 0.122


Resultant -26.786 -26.556 54.695 438.292 -442.009 0.122 at centroid

620 3402 0.032 -37.765 54.695 624.074 1.387 -0.072


Resultant 0.032 -37.765 54.695 624.074 1.387 -0.072 at centroid

640 3402 -26.721 -26.550 54.695 438.187 442.258 0.119


Resultant 26.721 -26.550 54.695 438.187 442.258 0.119 at centroid
12. CONCLUSIONS

The structure with the proposed geometry and the considered plate thicknesses
it meets the strength conditions for a wind speed of 100 km/h
(survival speed), the maximum effort occurs at the base of the monopole,
reaching 67.7% of its permitted load capacity according to the TIA/EIA code
222–F.

2. The structure exhibits the following deformations that have been measured at the peak.
of the structure for a wind speed of 90km/h (Operating Speed).

Deflection: 0.2625 m = 0.62° < 0.75°

Twist: 0.002° < 0.30°

These deformations meet the established limit parameters.

3.The maximum forces (kN) that the structure transmits to the base, for the design of the
The foundations are as follows.

SUPPORT REACTIONS (Applied to tower)

MAXIMUM EFFORTS IN X-X

CASE Fx (kN) Fy (kN) kN Mx (Kn-m) My (kN-m)


620 0.00 -37.765 54.695 624.074 0.00

MAXIMUM EFFORTS IN Y-Y

CASE kN Fy (kN) Fz (kN) Mx (Kn-m) My (kN-m)


500 37.873 0.00 54.695 0.00 626.935

You might also like