Monopole Calculation Memory 24
Monopole Calculation Memory 24
METALOPOLY
24.00m
100km/h
75 km/h
INDEX
1. SCOPE ............................................................................................................................................3
2. DESCRIPTION FROM THE STRUCTURE
3. RULES OF DESIGN
4. MATERIALS 7
5. METHODOLOGY OF ANALYSIS
6. LOADS OF DESIGN
6.1 CARGAS PERMANENTES ....................................................................................................................8
6.2 EVENTUAL LOADS ........................................................................................................................8
7. DEFORMATIONS 8
8. COMBINATIONS LOAD................................................................................................................9
9. DATA PROGRAM ENTRY ....................................................................................................9
9.1 GGEOMETRY.
9.2 ANTENNA LOADS
9.3 LOADS
10. EVALUATION OF THE TOWER ............................................................................................................16
10.1 SURVIVAL DESIGN: WIND SPEED 100KM/H16
10.2 DESIGN BY OPERATION: WIND SPEED 90KM/H19
11. REACTIONS AT THE BASE ...............................................................................................................20
12. CONCLUSIONS..............................................................................................................................20
CALCULATION BASES AND STRUCTURING
1. SCOPE
This calculation report describes the criteria adopted for the structural design of
a metal monopole of 24.00 m. The Ms-Tower program has been used
The type of structure is a 24.00 m high monopole embedded at its base, the structure
It is a dodecagonal frustum and consists of 4 sections of 6m in length each.
Structural Standards for Steel Antenna Towers and Antenna Supporting Structures
TIA/EIA-F 1996.
For the design of the tower elements, we will use the American Code of
Telecommunications TIA/EIA–222–F, in which in its chapter 3, numeral 3.1.14.1 accepts the
use of permissible stresses according to the standards set by the American Institute of Steel
Construction (AISC).
In that case, it will not be necessary to apply safety coefficients to the acting loads, as the
The formulas for allowable stresses established in the AISC already have safety factors.
that reduce their value and that are based on the slenderness of their members.
The formulas used are found in sections 1.5.1.3.1 and 1.5.1.3.2 of the AISC manual.
being these the following:
When ∗ ≤
( 2)
[1 -
2 2] ∗
=
5 3 * () ( )3
3 + 8Cc −
8CC3
When ∗ / ≥
12∗ 2
=
23 * ( )2
2 2
Where: =√
∗
As for the slenderness ratio, it will be considered that k*l/r < 200 at maximum.
For this type of structures, k = 1.0 is assumed, the ends of the elements are modeled as
articulated.
The TIA/EIA–222–F standards in their numeral 3.1.1.1 establish that for tall structures
less than 213 m as in the present case, the allowable stresses obtained according to the AISC
they can be increased by 1/3, which will be taken into account when designing the elements.
For the structural design, the mathematical model was prepared in the Ms Tower program, with the
geometry, characteristics and properties required to represent the structure in the manner
as real as possible.
i. AISC. “Specifications for structural steel buildings – Allowable stress design and
plastic design, 2010.
ii. TIA/EIA 222– F. "Structural Standards for steel antenna towers and antenna"
supporting structures,” June 1996
4. MATERIALS
The profiles that make up the tower structure are made of ASTM A-36 steel.
The structural and geometric characteristics used for the structural design of the tower
son
High strength bolts ASTM A325, for connection between tower bodies.
5. ANALYSIS METHODOLOGY
The structural design was carried out considering the Allowable Stress Design Method (ASD), under
the assumption of small deformations so that the structure behaves under the theory
linear elastic.
6. DESIGN LOADS
Earthquake (E): It is not considered since the action of the wind is predominant over the action.
7. DEFORMATIONS
The maximum deformation of the structure will be considered at the value measured at the apex of the
tower, recommended by the TIA-EIA-222-F. The maximum displacements will be measured at
an operating speed of 90 km/h.
0.75°
To obtain the load combinations that will be used in the analysis of the structure, it is necessary to
comply with what is stated in the AISC standards (ASD 2010).
9.1 GEOMETRY
TITL1 MONOPOLY 24
CLEAR TITLE 2
UNITS 1
PROFILE
FACES 1
WBASE 0.988
RLBAS 1.000
PANEL 1 HT 0.5000 TW 0.5051
FACE SH4 LEG 1 R1 37
PANEL 2 HT 0.5000 TW 0.5153
FACE SH4 LEG 2 R1 37
PANEL 3 HT 0.5000 TW 0.5254
FACE SH4 LEG 3 R1 37
PANEL 4 HT 0.5000 TW 0.5356
FACE SH4 LEG 4 R1 37
PANEL 5 HT 0.5000 TW 0.5458
FACE SH4 LEG 5 R1 37
PANEL 6 HT 0.5000 TW 0.5559
FACE SH4 LEG 6 R1 37
PANEL 7 HT 0.5000 TW 0.5661
FACE SH4 LEG 7 R1 37
PANEL 8 HT 0.5000 TW 0.5763
FACE SH4 LEG 8 R1 37
PANEL 9 HT 0.5000 TW 0.5864
FACE SH4 LEG 9 R1 37
PANEL 10 HT 0.5000 TW 0.5966
FACE SH4 LEG 10 R1 37
PANEL 11 HT 0.5000 TW 0.6068
FACE SH4 LEG 11 R1 37
PANEL 12 HT 0.5000 TW 0.6169
FACE SH4 LEG 12 R1 37
PANEL 13 HT 0.6667 TW 0.6288
FACE SH4 LEG 13 R1 37
PANEL 14 HT 0.6667 TW 0.6423
FACE SH4 LEG 14 R1 37
PANEL 15 HT 0.6667 TW 0.6559
FACE SH4 LEG 15 R1 37
PANEL 16 HT 0.6667 TW 0.6694
FACE SH4 LEG 16 R1 37
PANEL 17 HT 0.6667 TW 0.6830
FACE SH4 LEG 17 R1 37
PANEL 18 HT 0.6667 TW 0.6966
FACE SH4 LEG 18 R1 37
PANEL 19 HT 0.6667 TW 0.7101
FACE SH4 LEG 19 R1 37
PANEL 20 HT 0.6667 TW 0.7237
FACE SH4 LEG 20 R1 37
PANEL 21 HT 0.6667 TW 0.7372
FACE SH4 LEG 21 R1 37
PANEL 22 HT 0.7500 TW 0.7516
FACE SH4 LEG 22 R1 37
PANEL 23 HT 0.7500 TW 0.7669
FACE SH4 LEG 23 R1 37
PANEL 24 HT 0.7500 TW 0.7821
FACE SH4 LEG 24 R1 37
PANEL 25 HT 0.7500 TW 0.7974
FACE SH4 LEG 25 R1 37
PANEL 26 HT 0.7500 TW 0.8126
FACE SH4 LEG 26 R1 37
PANEL 27 HT 0.7500 TW 0.8279
FACE SH4 LEG 27 R1 37
PANEL 28 HT 0.7500 TW 0.8431
FACE SH4 LEG 28 R1 37
PANEL 29 HT 0.7500 TW 0.8584
FACE SH4 LEG 29 R1 37
PANEL 30 HT 1.0000 TW 0.8762
FACE SH4 LEG 30 R1 37
PANEL 31 HT 1.0000 TW 0.8965
FACE SH4 LEG 31 R1 37
PANEL 32 HT 1.0000 TW 0.9168
FACE SH4 LEG 32 R1 37
PANEL 33 HT 1.0000 TW 0.9372
FACE SH4 LEG 33 R1 37
PANEL 34 HT 1.0000 TW 0.9575
FACE SH4 LEG 34 R1 37
PANEL 35 HT 1.0000 TW 0.9778
FACE SH4 LEG 35 R1 37
PANEL 36 HT 0.0000 TW 0.9880
FACE SH4 LEG 36 R1 37
END
SECTIONS
MONOPOLY LIB 2
1 PG1.505x5 FY 250.00
2 PG2.515x5 FY 250.00
3 PG3.525x5 FY 250.00
4 PG4.536x5 FY 250.00
5 PG5.546x5 FY 250.00
6 PG6.556x5 FY 250.00
7 PG7.566x5 FY 250.00
8 PG8.576x5 FY 250.00
9 PG9.586x5 FY 250.00
10 PG10.597x5 FY 250.00
11 PG11.607x5 FY 250.00
12 PG12.617x5 FY 250.00
13 PG13.629x5 FY 250.00
14 PG14.642x5 FY 250.00
15 PG15.656x5 FY 250.00
16 PG16.669x5 FY 250.00
17 PG17.683x5 FY 250.00
18 PG18.697x5 FY 250.00
19 PG19.710x5 FY 250.00
20 PG20.724x5 FY 250.00
21 PG21.737x5 FY 250.00
22 PG22.752x6 FY 250.00
23 PG23.767x6 FY 250.00
24 PG24.782x6 FY 250.00
25 PG25.797x6 FY 250.00
26 PG26.813x6 FY 250.00
27 PG27.828x6 FY 250.00
28 PG28.843x6 FY 250.00
29 PG29.858x6 FY 250.00
30 PG30.876x6 FY 250.00
31 PG31.897x6 FY 250.00
32 PG32.917x6 FY 250.00
33 PG33.937x6 FY 250.00
34 PG34.958x6 FY 250.00
35 PG35.978x6 FY 250.00
36 PG36.988x6 FY 250.00
37 DUMMY FY 250.00
END
SUPPORT
COORD 0.0 0.0 1,000 FIXED
END
The dimensions of the antennas that were considered in the design were
following:
-12 RRUS with dimensions 40x30x15cm and weight 25kg each at maximum.
-03 RF antennas measuring 2.6 x 0.55 x 0.15 meters and weighing 80 kg each at the limit.
-01 MW antenna with a diameter of 0.6 meters and a weight of 50 kg.
-01 Radomo h=3.3 m x d=2.7 m (Persian-type Polymer + Metal Structures)
END
LOADS
END
ANCILLARIES
END
END
Figure No. 1. Main view of antenna loads on the structure.
10. EVALUATION OF THE TOWER
MONOPOLO 24 CLEAR 3
20-JUL-18 12:35:07
MONOPOLY 24
CLEAR
-- L O A D C A S E S --
Case Y/N Title
100 Y Weight of tower plus ancillaries
200 Y WIND AT 0 TO X AXIS
220 Y WIND AT 45 TO X AXIS
240 Y WIND AT 90 TO X AXIS
260 Y WIND AT 135 TO X AXIS
280 Y WIND AT 180 TO X AXIS
300 Y WIND AT 225 TO X AXIS
320 Y WIND AT 270 TO X AXIS
340 Y WIND AT 315 TO X AXIS
500 Y LOAD: WIND AT 0 TO X AXIS
520 Y LOAD: WIND AT 45 TO X AXIS
540 Y LOAD: WIND AT 90 TO X AXIS
560 Y LOAD: WIND AT 135 TO X AXIS
580 Y LOAD: WIND AT 180 TO X AXIS
600 Y LOAD: WIND AT 225 TO X AXIS
620 Y LOAD: WIND AT 270 TO X AXIS
640 Y LOAD: WIND AT 315 TO X AXIS
Y = Cases to be checked
N = Not Used
Report Units:
Dims., lengths, areas ... mm, mm2
Forces ..................... kN
Moments, Torques ........... kNm
Stresses ..............N/mm2 (MPa)
Cantilevered pole
Computed capacities assume pole is predominantly subject to bending.
Memb Ht D t fy LC P Mx My Mr T fa fb Fa Fb Ft ratio
1 4.8 250.0 620 11 48 0 48 0 1.4 51.3 199.5 199.5 0 0.264
101 24.00 515.2 4.8 250.0 620 11 41 0 41 0 1.4 41.7 199.5 199.5 0 0.216
201 23.50 525.4 4.8 250.0 620 13 33 0 33 0 1.7 32.6 199.5 199.5 0 0.172
301 23.00 535.6 4.8 250.0 500 16 0 24 24 0 2.0 22.6 199.5 199.5 0 0.124
401 22.50 545.8 4.8 250.0 500 19 0 14 14 0 2.2 12.9 199.5 199.5 0 0.076
501 22.00 555.9 4.8 250.0 640 19 3 3 4 0 2.3 3.9 199.5 199.5 0 0.031
601 21.50 566.1 4.8 250.0 500 20 0 6 6 0 2.3 5.1 199.5 199.5 0 0.037
701 21.00 576.2 4.8 250.0 500 20 0 16 16 0 2.3 13.2 199.5 199.5 0 0.078
801 20.50 586.4 4.8 250.0 500 21 0 27 27 0 2.3 20.9 199.5 199.5 0 0.116
901 4.8 250.0 500 21 0 37 37 0 2.4 28.1 199.5 199.5 0 0.153
1001 19.50 606.8 4.8 250.0 500 26 0 49 49 0 2.9 36.0 199.5 199.5 0 0.195
1101 19.00 616.9 4.8 250.0 500 29 0 62 62 0 3.0 43.8 199.5 199.5 0 0.235
1201 18.33 628.8 4.8 250.0 500 29 0 79 79 0 3.0 53.8 199.5 199.5 0 0.285
1301 17.67 642.3 4.8 250.0 500 30 0 96 96 0 3.1 63.2 199.5 199.5 0 0.332
1401 17.00 655.9 4.8 250.0 500 31 0 114 114 0 3.1 71.6 199.5 199.5 0 0.375
1501 16.33 669.4 4.8 250.0 500 32 0 132 132 0 3.1 79.5 199.5 199.5 0 0.414
1601 15.67 683.0 4.8 250.0 500 32 0 150 150 0 3.1 86.9 199.5 199.5 0 0.451
1701 15.00 696.6 4.8 250.0 500 33 0 169 169 0 3.1 93.8 199.5 199.5 0 0.486
1801 4.8 250.0 500 34 0 188 188 0 3.1 100.3 199.5 199.5 0 0.518
1901 4.8 250.0 500 34 0 207 207 0 3.1 106.3 199.5 199.5 0 0.549
2001 13.00 737.2 4.8 250.0 500 35 0 226 226 0 3.1 112.0 199.5 199.5 0 0.577
2101 12.25 751.6 6.3 250.0 500 36 0 248 248 0 2.3 89.2 199.5 199.5 0 0.459
2201 11.50 766.9 6.3 250.0 500 37 0 271 271 0 2.4 93.5 199.5 199.5 0 0.480
2301 6.3 250.0 500 38 0 294 294 0 2.4 97.4 199.5 199.5 0 0.500
2401 10.00 797.4 6.3 250.0 500 39 0 317 317 0 2.4 101.1 199.5 199.5 0 0.519
2501 9.25 812.6 6.3 250.0 500 40 0 340 340 0 2.4 104.6 199.5 199.5 0 0.536
2601 8.50 827.9 6.3 250.0 500 41 0 364 364 0 2.5 107.8 199.5 199.5 0 0.553
2701 7.75 843.1 6.3 250.0 500 42 0 389 389 0 2.5 110.8 199.5 199.5 0 0.568
2801 7.00 858.4 6.3 250.0 500 44 0 414 414 0 2.5 113.7 199.5 199.5 0 0.583
2901 6.00 876.2 6.3 250.0 500 45 0 447 447 0 2.5 118.0 199.5 199.5 0 0.604
3001 5.00 896.5 6.3 250.0 500 47 0 482 482 0 2.6 121.3 199.5 199.5 0 0.621
3101 4.00 916.8 6.3 250.0 500 48 0 517 517 0 2.6 124.4 199.5 199.5 0 0.636
3201 3.00 937.2 6.3 250.0 500 50 0 553 553 0 2.6 127.2 199.5 199.5 0 0.651
3301 2.00 957.5 6.3 250.0 500 52 0 589 589 0 2.7 129.9 199.5 199.5 0 0.665
3401 1.00 977.8 6.3 250.0 500 54 0 627 627 0 2.7 132.4 199.5 199.5 0 0.677
Mass Summary
Sect Size fy L (m) M (kg)
1 PG1.505X5 And 250 0.50 30.06
2 PG2.515X5 Y 250 0.50 30.67
3 PG3.525X5 And 250 0.50 31.28
4 PG4.536X5 And 250 0.50 31.89
5 PG5.546X5 Y 250 0.50 32.50
6 PG6.556X5 Y 250 0.50 33.11
7 PG7.566X5 Y 250 0.50 33.72
8 PG8.576X5 Y 250 0.50 34.33
9 PG9.586X5 And 250 0.50 34.94
10 PG10.597X5 And 250 0.50 35.55
11 PG11.607X5 And 250 0.50 36.16
12 PG12.617X5 Y 250 0.50 36.77
13 PG13.629X5 And 250 0.67 49.98
14 PG14.642X5 And 250 0.67 51.07
15 PG15.656X5 And 250 0.67 52.16
16 PG16.669X5 And 250 0.67 53.24
17 PG17.683X5 And 250 0.67 54.33
18 PG18.697X5 And 250 0.67 55.41
19 PG19.710X5 Y 250 0.67 56.50
20 PG20.724X5 And 250 0.67 57.59
21 PG21.737X5 And 250 0.67 58.67
22 PG22.752X6 And 250 0.75 89.59
23 PG23.767X6 And 250 0.75 91.42
24 PG24.782X6 Y 250 0.75 93.26
25 PG25.797X6 And 250 0.75 95.09
26 PG26.813X6 And 250 0.75 96.92
27 PG27.828X6 And 250 0.75 98.76
28 PG28.843X6 Y 250 0.75 100.59
29 PG29.858X6 Y 250 0.75 102.42
30 PG30.876X6 Y 250 1.00 139.41
31 PG31.897X6 And 250 1.00 142.67
32 PG32.917X6 Y 250 1.00 145.93
33 PG33.937X6 Y 250 1.00 149.19
34 PG34.958X6 And 250 1.00 152.45
35 PG35.978X6 And 250 1.00 155.71
37 DUMMY Y 250 51.74 5.10
--------
2548.44
10.2 DESIGN BY OPERATION: WIND SPEED 90KM/H
MONOPOLO 24
CLEAR
-- L O A D C A S E S --
Case Yes/No Title
100 Y WEIGHT OF TOWER PLUS ANCILLARIES
200 Y WIND AT 0 TO X AXIS
220 Y WIND AT 45 TO X AXIS
240 WIND AT 90 TO X AXIS
260 Y WIND AT 135 TO X AXIS
280 Y wind at 180 to X axis
300 Y wind at 225 to X axis
320 Y wind at 270 to X axis
340 Y wind at 315 to X axis
500 AND LOAD: WIND AT 0 TO X AXIS
520 AND LOAD: WIND AT 45 TO X AXIS
540 AND LOAD: WIND AT 90 TO X AXIS
560 AND LOAD: WIND AT 135 TO X AXIS
580 AND LOAD: WIND AT 180 TO X AXIS
600 AND LOAD: WIND AT 225 TO X AXIS
620 AND LOAD: WIND AT 270 TO X AXIS
640 AND LOAD: WIND AT 315 TO X AXIS
Y = Cases to be checked
N = Not Used
The structure with the proposed geometry and the considered plate thicknesses
it meets the strength conditions for a wind speed of 100 km/h
(survival speed), the maximum effort occurs at the base of the monopole,
reaching 67.7% of its permitted load capacity according to the TIA/EIA code
222–F.
2. The structure exhibits the following deformations that have been measured at the peak.
of the structure for a wind speed of 90km/h (Operating Speed).
3.The maximum forces (kN) that the structure transmits to the base, for the design of the
The foundations are as follows.