Integration
Integration of Simple Polinomial
Exp.1
  5 dx   =    5x
0
 dx
             =   5 x 
0+1
     +  c                     
0+1
             =   5x  +   c
  Convert to the form of ax
n
 before 
integrate
 ax
n
 dx  = ax 
n+1
      + c                       
n+1
(a and c are constants)
Exp. 
  !1!!    dx   =    "x 
#
 dx
   x
             =    x   
#+1
     +  c
                   ( 
#+1)
            
             =   #" x
#1
 + c
             =   #1  +   c
                   x
  Convert to the form of ax
n
 before 
integrate
 ax
n
 dx  = ax 
n+1
      + c
                       
n+1
Try it yourself
a)#$dx=   Convert to the form of ax
n
 before 
integrate
 ax
n
 dx  = ax 
n+1
      + c
                        
n+1
b)    #10x
5
dx=  ax
n
 dx  = ax 
n+1
      + c
                       
n+1
c)    5!    dx =
      $x
%
  Convert to the form of ax
n
 before 
integrate
 ax
n
 dx  = ax 
n+1
      + c
                        
n+1
d)  % x
%  
dx =
      
e)  #$ x
"  
dx =
  
f)    5! 
 
 
   
dx =
      $ x
%
g)    1
         
dx =
     ( x)
h)  %  & x
  
dx =
      
i)   x
1'%  
dx =
      
()   #)
  
dx =
       5x
5
*)   #+ dx =
       &x
,)    (& x  +  x)
  
dx = m)   ( x
 - x  +% )
  
dx =
A.Integrals of algebraic expressions
a)  (%x - )(x+1) dx =  (%x
 
+ x -  )dx
                                  =  %x 
%
 
   
+ x 
   # x  + c
                                       %        
                                  
                                  
                                  = x
%
  + "x
  # x  + c
 expand' simp,if. expression to the       
     ,o/est form
 ax
n
 dx  = ax 
n+1
      + c
                        
n+1
(a and c are constants)
b)  x 
   + %x  dx  =  ( x  + % )dx
            x
                          =  
   
x 
   + %x  + c
                                 
                                  
                                 
 expand' simp,if. expression to the       
     ,o/est form
 ax
n
 dx  = ax 
n+1
      + c
                        
n+1
Try it yourself
c)  (x
 - 1)( #x) dx= d)  x 
   # %   dx  = 
            x
5
e)  x( x # ")  dx  =  f)  x
( x
  
# %) dx  = 
            
 g) +  # x dx  = 
          x
%
h)   0 -  x 
     dx  = 
        % +  x
B.Integration by Substitution
a)  (4x #%)
%
 dx  
=  1
%
(1'4 d1)
= 2  1
%
 d1
= 2 ( 1 
+
 )  + c
          +
= 1  (+x - %)
+
 + c
   1) 
3et  u  = 4x -3
     4hen du/dx  = 4
 (ax + b)
n
 dx  = (ax + b) 
n+1
      + c
                                   a(n+1)
                         (a5 b  and c are constants)
 ax
n
 dx  = ax 
n+1
      + c
                        
n+1
s1bstit1te bac*  u  = 4x -3
b)          1          dx =
         (%x +  )
+
c)          %         dx =
         ($ - %x )
d)     (6 - +x) 
)
      dx =
                
e)    x  # 
     
 dx
        
f)   7 (  - )x)
%
 dx g)          #%          dx =
         (x + 10)
6
C.Definite Integrals
a)  
#$dx= 
#$x
0
      
1                 1
               = 8 #$x 9
                            
1
               = 8#$()9 - 8#$(1)9
               = #$
  Convert to the form of ax
n
 before 
integrate
 ax
n
 dx  = ax 
n+1
      + c
                        
n+1
 :1bstit1te 8;pper ,imit9#83o/er ,imit9
b)  
%
 #10x
5
dx =
0
c)   
0
  (#x)(x + %) dx
      
#
d) 
%
   5!    dx =
    
#1
  $x
%
e) 
 (& x  +  x)
  
dx =
    
#1
d) 
1   
 % x
%  
dx =
    
#
    
e)  
   #$ x
"  
dx =
      
1
  
f)  
%
   5! 
 
 
   
dx =
     
0  
$ x
%
g)  
%
     1
         
dx =
      
  ( x)
h)  %  
  
& x
  
dx =
         
#1
i)  
%
    x
1'%  
dx =
     
1
      
()   
   
#)
  
dx =
      
1
    5x
5
*)   
%
    #+ dx =
       
1
    &x
,)   
#
     x  # 
     
 dx
      
#%
     
m)  
+
 ( x
 - x  +% )
  
dx =
       
0