Head Loss Calculation in Aqueduct
Canal waterway, Lt
Chainage
Discharge
Bed Width
Depth of Water
Full Supply Level
Drain
High Flood Discharge
High Flood Level
River Bed Level
High Flood Depth
Ground Level
Design
Drainage Waterway Lacey's regime perimeter,
: 2+302km to 2+382km
Q
B
D
FSL
Qd
HFL
Dd
GL
P=
P=
Warer way provided
Canal waterway, Lt
Let the width of Flume,
Provide 2:1 splay in contraction & 3:1 in expansion
Length of contraction transition =
Length of expansition transition transition =
Head loss and bed levels at different sections
At section 4-4
Area of section, A= (B+1.5xD)xD =
Velocity, V = Q/A =
Velocity head, hv = V2/2g =
Bf =
Lc
Lt
A
V
hv
R.L. of T.E.L . =
At section 3-3
Area of section, A= BfxD =
Velocity, V = Q/A =
Velocity head, hv = V2/2g =
TEL4
Loss of head in expansion from section 3-3 to 4-4 =
hle
A
V
hv
hle
RL of T.E.L at section 3-3 =
TEL3
RL of FSL
FSL3
RL of Bed
From section 3-3 to 2-2, area and velocity are constant
Hydraulic mean depth, R = A/P =
Velocity of flow in the trough,
BL3
Head loss in the trough = Ltx slope
At section 2-2
R
Vt = 1/nxR2/3xS1/2
S=
S=
hl2-3
RL of TEL
TEL2
RL of water surface level
FSL2
RL of bed level
At section 1-1
BL2
Loss of head in contraction from section 1-1 to 2-2 =
hle
hle
RL of TEL
TEL1
RL of water surface level
FSL1
RL of bed (to maintain constant depth)
BL1
Total Head loss
Provide Head Loss
h
h
n Aqueduct
Main Canal
: 2+302km to 2+382km
0.137 cumecs
0.7 m
0.294 m
86.91 m
60 cumecs
84.47 m
83.16
1.31 m
95 m
4.83xQ0.5
37 m
77 m
0.5 m
0.2 m
0.3 m
0.34 sqm
0.40 m/sec
0.01 m
86.92 m
0.147 sqm
0.93 m/sec
0.044 m
0.30x(V32-V42)/2g
0.011 m
86.931 m
86.887 m
86.593 m
0.135 m
Vt = 1/nxR2/3xS1/2
(Vtxn/(R2/3))2
0.0032
0.1184 m
87.049 m
87.005 m
86.711 m
0.20x(V22-V12)/2g
0.007 m
87.056 m
87.046 m
86.752 m
0.136 m
0.2 m
Design of RCC Aqueduct Structure
Name of Canal
Chainage
Trough Section
Flume bed width
Water depth
Main Canal
2+302km to 2+382km
0.200 m
Clear span, L
13.00 m
0.30 m
Uniformly distributed load=
5 KN/m2
The design of aqueduct is considered as two simply supported beam.
The base slab are simply supported by the beams.
The following assumption have been made.
Free board in aqueduct flume =
0.20 m
Load due to side railing
0.60 KN/m for each side wall.
Load/m run/beam
5.00 KN/m
Design of base slab
Use M15 grade concrete with high yield deformed bar
pbc
5.0 N/mm2
qc max =
qbd
pst
1.8 N/mm2
0.84 N/mm2
230 N/mm2
Density of concrete=
25 KN/m3
For a slab with two layer of reinforcement (top & bottom) the minimum
thickness is
0.25 m
Slab dead load=
0.25*25 =
6.25 KN/m run
The slab is assumed 1 m wide for design purpose
Load on slab/m run
The slab is designed assuming the aqueduct flume to be full of water
I.e. no freeboard , or
0.40 m deep
Imposed load due to water
Total imposed load
10*0.4 =
4.00+6.25 =
4.0 KN/m run
10.25 KN/m run
Slab effective span
Assume side beam ,
Slab effective span
0.25 m wide.
=
0.3+2*0.3/2
Maximum bending moment =
Maximum reaction
0.55 m
10.3*0.6^2/8 =
= 10.3*0.55/2
Maximum shear force=
0.39 KNm
2.8 KN
2.8 KN
Calculation of slab thickness
Mr=Rbd2 or d=(Mr/Rb)0.5
For M15 concrete, tor steel, R=
0.65
For the slab, b=1000 mm
d=((0.4*10^6)/(0.65*1000))^0.5=
24 m
Assuming cover = 50 mm and bar size =
20 mm
Actual slab depth, D = 24 + 50 +20/2 =
84 mm ( O. K. )
Provide slab thickness =
200 mm
d=200-40=
140 mm
Calculation of steel reinforcement
Ast= Mr/(pst . jd)
j= 0.904 from table 15.8 of PDSP manual
Ast=(0.4*10^6)/(230*0.904*140)=
13 mm2
Calculation of minimum reinforcement > 0.25% Ac.
0.25% Ac =0.25/100*200*1000=
500 mm2
Choose maxi. Steel Area, Ast
500 mm2
Choose
12 mm bars @
Provide, d1
12 mm bars @ S1 =
226 mm centers
220 mm centers
Area provide
514 mm2
O.K.
Check for shear force
qv = F/bd
qv = 2.84*10^3/(1000*140)=
0.02 N/mm2
Maximum allowable shear stress = 1.6/2 = 0.8 N/mm (Table 15.6 PDSP)
2
Check for nominal shear reinforcement
From table 15.11, 100As/bd = 100*514/(1000*140) =
Permissible shear stress in concrete qc =
0.37
0.262
as Qc>Qv no shear reinforcement
Distribution steel
From figure 15.10, Bottom mat steel is greater of
0.10%
Ac =
or 20 %
Ast =
0.10/100*200*1000
20/100*514
200 mm2
Max.. Steel Area, Ast
103 mm2
200 mm .
2
Choose
8 mm bars @
Provide, d2 =
8 mm bars @ d2 =
Area provide
251 mm centers
250 mm centers
201 mm2
O.K.
Design of Side Beam
Provisionally size of beam
Depth of beam
= 1/10 clear span
Width of beam =
1/2 depth
1.3 m
0.65 m
In fact beam depth is
Base slab thickness =
0.2 m
Water depth
0.2 m
Free Board
0.2 m
0.6 m
Assume a beam width, Bw =
0.3 m (Assume)
Load on a beam/ m run
Load
KN/m
Beam dead weight =
0.3*0.60*25
Base slab
1/2*0.3*0.20*25
Water
=
=
4.5
0.8
1/2*0.3*0.20+0.20*10=
0.6
5.85
Beam effective span
Assume support width =
0.3 m
Beam effective span =13.00+0.3 =
Maximum bending moment =
13.30 m
5.9*13.3^2/8 =
129.4 KNm
Maximum reaction
Maximum shear force=
= 5.9*13.3/2
=
38.9 KN
38.9 KN
Calculation of beam depth
Mr=Rbd2 or d=(Mr/Rb)0.5
For M15 concrete, tor steel, R=
0.65
d=((129.4*10^6)/(0.65)*0.3*100))^0.5=
814 m
Assuming cover = 50 mm and bar size =
20 mm
Actual beam depth,Bd = 814+ 50 + 20/2 =
874 mm
Actual depth required =
600 mm
Provide depth, Bd =
1000 mm
d= 1000-50-20/2 =
940 mm
Calculation of steel reinforcement
Ast= Mr/(pst . jd)
j= 0.904 from table 15.8 of PDSP manual
Ast=129.4*10^6/(230*0.904*940)=
662 mm2
Calculation of minimum reinforcement > 0.25% Ac.
0.25% Ac =0.25/100*300*1000=
750 mm2
Choose maxi. Steel Area, Ast
750 mm2
Provide, N1
3 Nos d3 =
Area provided
20 mm dia bars
942 mm2
O.K.
Check for spacing
Minimum bar spacing is lesser of ;
1) Bar diameter =
20 mm
2) Course aggregate size+ 5mm
25 mm
Actual bar spacing ;
Beam width
300 mm
Less cover twice
100 mm
Less stirrups say) =
20 mm
Less 3 nos bars
60 mm
Bar spacing = ( 300-100-20-60 )/4 =
O.K.
30 mm
Check for shear force
qv = F/bd
qv = 38.9*10^3/(300*1000)=
0.14 N/mm2
Maximum allowable shear stress = 1.8 N/mm2
Check for nominal shear reinforcement
From table 15.11, 100As/bd = 100*942/(300*1000) =
Permissible shear stress in concrete qc =
0.33
0.24
as Qc>Qv no shear reinforcement
Assuming spacing of
200 mm
Asv = 200*-28.8*10^3/(230*940) =
-27 mm2
Check for nominal shear reinforcement
Asv/bsv > 0.4/fy
for tor steel fy
Asv = 0.4* 300*200/415
415 N/mm2
=
58 mm2
Choose max shear reinforcement
Provide
58 mm2
8 mm dia bar Asv=
100 mm2
Area provided > Area required, hence O.K.
Provide, d6 =
Bar arrangement
8 mm dia bar @, S6=
200 mm c/c
Check
Provide hooks at end of main reinforcing steel to provide anchorage at supports.
Check for local bond stress
flbc = 38.9*10^3/(0.904*940*3*3.14*20) =
Allowable local bond stress = 0.84 N/mm
Top reinforcing steel
0.19 N/mm2
From fig. 15.9 of PDSP Manual
0.15% of Ac =
or 20 % of Ast =
0.15/100*300*1000
20/100*942
Use
450 mm2
188 mm2
450 mm .
2
Provide, N2 =
3 Nos of d4 dia bar
Area provided
16 mm dia bars
603 mm2
O.K.
Bar in beam side face
0.15% of Ac =
450 mm2/m
Choose
10 mm dia bar
Provide, d5 =
174 mm c/c
10 mm dia bar, S5 =
Area provided
150 mm c/c
523 mm2
O.K.
300
3 nos bar
16 mm dia c/c
1000
10 mm dia bar
300
150 mm c/c
8 mm dia bar
200 mm c/c
200
12 mm dia
8 mm dia
220 mm c/c
250 mm c/c
3 nos bar
Span
13.00 m
Main Canal
2+302km to 2+382km
20 mm dia c/c
Design of Aqueduct
Calculation of Scour
High flood discharge
=
River width
=
Average River bed level
=
High flood level (HFL)
=
Average discharge intensity, q =
Assuming silt factor, f =
Scour depth R = 1.34(q^2/f)^1/3 =
Taking factor
=
Anticipated scour level = HFL - 1.5*R =
Depth of cutoff, D = Bed level - Anticipated scour level
Adopt, D
=
Length of launching apron, L =1.5*D =
10.00
5
83.160
84.470
2
1
2.13
m3/s
m
m
m
m3/s/m
m
1.5
81.280798 m
1.88 m
2
m
3.00
m
Design of Suspended Crossing
Input data:
Span (L),m
Diameter of pipe used (mm)
Internal diameter of the pipe (mm)
Select Cable (mm)
No. of cables
Parameter
Design of the Cable
25
200
179.4
26
1
Value
Unit
Formula
gh
2.5
kg/m
self wt. of the cable
gw
gp
24.77
2.5
29.77
kg/m
kg/m
kg/m
water load
Pipe load
gh+gw+gl
w
fa
0.60
from field data
fb
0.60
from field data
bf
0.6
cd
0.4
H
Ta
3876.3
kg
3894.16
kg
Ta = H + w x fa
Tb
3894.16
kg
Ta = H + w x fb
Tmax
3894.16
kg
Max( Ta & Tb)
Tpermissible
7574
kg
Check Safe
Design of the Deadman Foundation
Remarks
For Symbol Detail see fig. belo
H = w x L2/(8xbf)
25 degree
30 degree
Backstay angle of the cable
Angle of internal friction of so
Tv
3529.31
kg
Ta Cos
Vertical component of Ta or Tb
Th
1645.74
kg
Ta Sin
Horizontal com. Of Ta or Tb
W
l
b
h
WP
7805.07
2.00
2.00
1.00
kg
m
m
m
Tv+(1.5*Th/tan)
8400.00
kg
Stone masonry
Weight of the foundation
Length of the foundation
Width of the foundation
Height of the foundation
Weight of the foundation
Check Safe
l/2
fa
l
Suspenders
bf
fb
Cd
HDPE pipe
l/2
fa
l
Suspenders
bf
fb
Cd
HDPE pipe
ing
kgf
Remarks
or Symbol Detail see fig. below
ackstay angle of the cable
ngle of internal friction of soil
ertical component of Ta or Tb
orizontal com. Of Ta or Tb
Weight of the foundation
ength of the foundation
Width of the foundation
eight of the foundation
Weight of the foundation (Provided)
h
b
h
b
Design Piped Canal
Case-I: Pipe flowing full
1
Input data
Notation
1.01
Design Discharge
Q
1.02
Dia of Pipe
1.03
Velocity of Canal
Vc
1.04
Start Point
Ch
1.05
End Point
Ch
1.06
Length of Pipe
L
1.07
bends at 45o
n
1.08
Pipe type HDPE
1.09
Reduced Level at Start Point
RL u/s
1.10
Reduced Level at End Point
RL d/s
hav
1.11
Available head loss
2 Calculation:
2.01 Pipes are designed velocity range
2.02
2.03
2.04
Sectional Area of Pipe
Velocity in the Pipe
Formula
Water Balance Chart
Assumed
Range
1 to 3
A
V
PI()*(90/1000)^2/4)
Q/A
Check velocity range
hf
[3.35x106 Q/(C x d2.63)]1.852
3 Head Loss Calculation
3.01
Frictional Head Loss
where
c=Hazen Williams roughness coefficient, (dimensionless) Typical value for polyethylene pipe=149
d= Pipe inside diameter, mm
Hf
3.03
Total Frictional Head Loss
hf xL
H
3.04
Entry and exit losses
1.5 (Vp2 -Vc2)
e
Kb
3.05
Bend Co-efficient
Kb Vp2/2g
3.06
Losses in bends
Hb
3.02
3.07
3.08
3.09
Total loss for 5 bend loss
Total head loss
Head availability check
Hb
HL
Hb Xn
Hf +He+Hb
if hav>HL
Note:From HDP pipe friction chart (Figure 10.15) from chapter 10.3 Rigid Boundary Canals D2 Field, Design Manual Volume 1
Design Piped Canal
Case-I: Pipe flowing full
1
Input data
Notation
1.01
Design Discharge
Q
1.02
Dia of Pipe
1.03
Velocity of Canal
Vc
1.04
Start Point
Ch
1.05
End Point
Ch
1.06
Length of Pipe
L
1.07
bends at 45o
n
1.08
Pipe type HDPE
1.09
Reduced Level at Start Point
RL u/s
1.10
Reduced Level at End Point
RL d/s
hav
1.11
Available head loss
2 Calculation:
2.01 Pipes are designed velocity range
2.02
2.03
2.04
Sectional Area of Pipe
Velocity in the Pipe
Formula
Water Balance Chart
Assumed
Range
1 to 3
A
V
PI()*(90/1000)^2/4)
Q/A
Check velocity range
3 Head Loss Calculation
3.01
Frictional Head Loss
hf
[3.35x106 Q/(C x d2.63)]1.852
where
c=Hazen Williams roughness coefficient, (dimensionless) Typical value for polyethylene pipe=149
d= Pipe inside diameter, mm
Hf
3.03
Total Frictional Head Loss
hf xL
He
3.04
Entry and exit losses
1.5 (Vp2 -Vc2)
Kb
3.05
Bend Co-efficient
Kb Vp2/2g
3.06
Losses in bends
Hb
3.02
3.07
3.08
3.09
Total loss for 16 bend loss
Total head loss
Head availability check
Hb
HL
Hb Xn
Hf +He+Hb
if hav>HL
Note:From HDP pipe friction chart (Figure 10.15) from chapter 10.3 Rigid Boundary Canals D2 Field, Design Manual Volume 1
Design Piped Canal
Case-I: Pipe flowing full
1
Input data
Notation
1.01
Design Discharge
Q
1.02
Dia of Pipe
1.03
Velocity of Canal
Vc
1.04
Start Point
Ch
1.05
End Point
Ch
1.06
Length of Pipe
L
1.07
bends at 45o
n
1.08
Pipe type HDPE
1.09
Reduced Level at Start Point
RL u/s
1.10
Reduced Level at End Point
RL d/s
hav
1.11
Available head loss
2 Calculation:
2.01 Pipes are designed velocity range
2.02
2.03
2.04
Sectional Area of Pipe
Velocity in the Pipe
Formula
Water Balance Chart
Assumed
Range
1 to 3
A
V
PI()*(90/1000)^2/4)
Q/A
Check velocity range
hf
[3.35x106 Q/(C x d2.63)]1.852
3 Head Loss Calculation
3.01
Frictional Head Loss
where
c=Hazen Williams roughness coefficient, (dimensionless) Typical value for polyethylene pipe=149
d= Pipe inside diameter, mm
Hf
3.03
Total Frictional Head Loss
hf xL
He
3.04
Entry and exit losses
1.5 (Vp2 -Vc2)
Kb
3.05
Bend Co-efficient
Kb Vp2/2g
3.06
Losses in bends
Hb
3.02
3.07
3.08
3.09
Total loss for 20 bend loss
Total head loss
Head availability check
Hb
HL
Hb Xn
Hf +He+Hb
if hav>HL
Note:From HDP pipe friction chart (Figure 10.15) from chapter 10.3 Rigid Boundary Canals D2 Field, Design Manual Volume 1
Design Piped Canal
Case-I: Pipe flowing full
1
Input data
Notation
1.01
Design Discharge
Q
1.02
Dia of Pipe
1.03
Velocity of Canal
Vc
1.04
Start Point
Ch
1.05
End Point
Ch
1.06
Length of Pipe
L
1.07
bends at 45o
n
1.08
Pipe type HDPE
1.09
Reduced Level at Start Point
RL u/s
1.10
Reduced Level at End Point
RL d/s
hav
1.11
Available head loss
2 Calculation:
2.01 Pipes are designed velocity range
2.02
2.03
2.04
Sectional Area of Pipe
Velocity in the Pipe
Formula
Water Balance Chart
Assumed
Range
1 to 3
A
V
PI()*(140/1000)^2/4)
Q/A
Check velocity range
hf
[3.35x106 Q/(C x d2.63)]1.852
3 Head Loss Calculation
3.01
Frictional Head Loss
where
c=Hazen Williams roughness coefficient, (dimensionless) Typical value for polyethylene pipe=149
d= Pipe inside diameter, mm
Hf
3.03
Total Frictional Head Loss
hf xL
H
3.04
Entry and exit losses
1.5 (Vp2 -Vc2)
e
Kb
3.05
Bend Co-efficient
Kb Vp2/2g
3.06
Losses in bends
Hb
3.02
3.07
3.08
3.09
Total loss for 5 bend loss
Total head loss
Head availability check
Hb
HL
Hb Xn
Hf +He+Hb
if hav>HL
Note:From HDP pipe friction chart (Figure 10.15) from chapter 10.3 Rigid Boundary Canals D2 Field, Design Manual Volume 1
Design Piped Canal
Case-I: Pipe flowing full
1
Input data
Notation
1.01
Design Discharge
Q
1.02
Dia of Pipe
1.03
Velocity of Canal
Vc
1.04
Start Point
Ch
1.05
End Point
Ch
1.06
Length of Pipe
L
1.07
bends at 45o
n
1.08
Pipe type HDPE
1.09
Reduced Level at Start Point
RL u/s
1.10
Reduced Level at End Point
RL d/s
hav
1.11
Available head loss
2 Calculation:
2.01 Pipes are designed velocity range
2.02
2.03
Sectional Area of Pipe
Velocity in the Pipe
Formula
Water Balance Chart
Assumed
Range
1 to 3
A
V
PI()*(140/1000)^2/4)
Q/A
2.04
Check velocity range
3 Head Loss Calculation
3.01
Frictional Head Loss
hf
[3.35x106 Q/(C x d2.63)]1.852
where
c=Hazen Williams roughness coefficient, (dimensionless) Typical value for polyethylene pipe=149
d= Pipe inside diameter, mm
Hf
3.03
Total Frictional Head Loss
hf xL
He
3.04
Entry and exit losses
1.5 (Vp2 -Vc2)
Kb
3.05
Bend Co-efficient
Kb Vp2/2g
3.06
Losses in bends
Hb
3.02
3.07
3.08
3.09
Total loss for 5 bend loss
Total head loss
Head availability check
Hb
HL
Hb Xn
Hf +He+Hb
if hav>HL
Note:From HDP pipe friction chart (Figure 10.15) from chapter 10.3 Rigid Boundary Canals D2 Field, Design Manual Volume 1
Design Piped Canal
Case-I: Pipe flowing full
1
Input data
Notation
1.01
Design Discharge
Q
1.02
Dia of Pipe
1.03
Velocity of Canal
Vc
1.04
Start Point
Ch
1.05
End Point
Ch
1.06
Length of Pipe
L
1.07
bends at 45o
n
1.08
Pipe type HDPE
1.09
Reduced Level at Start Point
RL u/s
1.10
Reduced Level at End Point
RL d/s
hav
1.11
Available head loss
2 Calculation:
2.01 Pipes are designed velocity range
2.02
2.03
2.04
Sectional Area of Pipe
Velocity in the Pipe
Formula
Water Balance Chart
Assumed
Range
1 to 3
A
V
PI()*(140/1000)^2/4)
Q/A
Check velocity range
hf
[3.35x106 Q/(C x d2.63)]1.852
3 Head Loss Calculation
3.01
Frictional Head Loss
where
c=Hazen Williams roughness coefficient, (dimensionless) Typical value for polyethylene pipe=149
d= Pipe inside diameter, mm
Hf
3.03
Total Frictional Head Loss
hf xL
He
3.04
Entry and exit losses
1.5 (Vp2 -Vc2)
Kb
3.05
Bend Co-efficient
Kb Vp2/2g
3.06
Losses in bends
Hb
3.02
3.07
3.08
3.09
Total loss for 5 bend loss
Total head loss
Head availability check
Hb
HL
Hb Xn
Hf +He+Hb
if hav>HL
Note:From HDP pipe friction chart (Figure 10.15) from chapter 10.3 Rigid Boundary Canals D2 Field, Design Manual Volume 1
Design Piped Canal
Case-I: Pipe flowing full
1
Input data
Notation
1.01
Design Discharge
Q
1.02
Dia of Pipe
1.03
Velocity of Canal
Vc
1.04
Start Point
Ch
1.05
End Point
Ch
1.06
Length of Pipe
L
1.07
bends at 45o
n
1.08
Pipe type HDPE
1.09
Reduced Level at Start Point
RL u/s
1.10
Reduced Level at End Point
RL d/s
hav
1.11
Available head loss
2 Calculation:
2.01 Pipes are designed velocity range
2.02
2.03
2.04
Sectional Area of Pipe
Velocity in the Pipe
Formula
Water Balance Chart
Assumed
Range
1 to 3
A
V
PI()*(140/1000)^2/4)
Q/A
Check velocity range
hf
[3.35x106 Q/(C x d2.63)]1.852
3 Head Loss Calculation
3.01
Frictional Head Loss
where
c=Hazen Williams roughness coefficient, (dimensionless) Typical value for polyethylene pipe=149
d= Pipe inside diameter, mm
Hf
3.03
Total Frictional Head Loss
hf xL
H
3.04
Entry and exit losses
1.5 (Vp2 -Vc2)
e
Kb
3.05
Bend Co-efficient
Kb Vp2/2g
3.06
Losses in bends
Hb
3.02
3.07
3.08
3.09
Total loss for 5 bend loss
Total head loss
Head availability check
Hb
HL
Hb Xn
Hf +He+Hb
if hav>HL
Note:From HDP pipe friction chart (Figure 10.15) from chapter 10.3 Rigid Boundary Canals D2 Field, Design Manual Volume 1
Section
Calculation Unit
12 lps
90 mm
1 m/s
0+150 m
0+240 m
90 m
5
1
Remarks
CWR
1645 m
1641 m
4m
Google map
Google map
0.00600 sqm
2.00 m/s
O.K
3.46 m/100m
HazenWilliams
equation.
3.114 m
0.23 m
0.1
0.02 m
0.1 m
3.44 m
O.K.
nals D2 Field, Design Manual Volume 1
Section
Calculation Unit
12 lps
90 mm
1 m/s
0+360 m
0+411 m
51 m
16
1631 m
1622 m
9m
0.00600 sqm
2.00 m/s
O.K
2
Remarks
CWR
Start Point
Outlet
Google map
Google map
3.46 m/100m
HazenWilliams
equation.
1.7646 m
0.23 m
0.1
0.02 m
0.32 m
2.31 m
O.K.
nals D2 Field, Design Manual Volume 1
Section
Calculation Unit
12 lps
90 mm
1 m/s
0+742 m
0+772 m
30 m
20
1530 m
1525 m
5m
3
Remarks
CWR
Sec.Inlet
Sec.Inlet
Goole map
Goole map
0.00600 sqm
2.00 m/s
O.K
3.46 m/100m
1.038 m
0.23 m
0.1
0.02 m
0.4 m
1.67 m
O.K.
nals D2 Field, Design Manual Volume 1
HazenWilliams
equation.
Section
Calculation Unit
21.1 lps
140 mm
1 m/s
0+407 m
0+682 m
275 m
5
4
Remarks
CWR
Sec.Inlet
outlet
1461 m
1429 m
32 m
Goole map
Goole map
0.01500 sqm
1.41 m/s
O.K
1.15 m/100m
HazenWilliams
equation.
3.1625 m
0.08 m
0.1
0.01 m
0.05 m
3.29 m
O.K.
nals D2 Field, Design Manual Volume 1
Section
Calculation Unit
21.1 lps
140 mm
1 m/s
0+682 m
0+732 m
50 m
5
1429 m
1426 m
3m
0.01500 sqm
1.41 m/s
5
Remarks
CWR
outlet
outlet
Goole map
Goole map
O.K
1.15 m/100m
HazenWilliams
equation.
0.575 m
0.08 m
0.1
0.01 m
0.05 m
0.71 m
O.K.
nals D2 Field, Design Manual Volume 1
Section
Calculation Unit
21.1 lps
140 mm
1 m/s
0+732 m
1+212 m
480 m
5
1426 m
1420 m
6m
6
Remarks
CWR
outlet
outlet
Goole map
Goole map
0.01500 sqm
1.41 m/s
O.K
1.15 m/100m
5.52 m
0.08 m
0.1
0.01 m
0.05 m
5.65 m
O.K.
nals D2 Field, Design Manual Volume 1
HazenWilliams
equation.
Section
Calculation Unit
21.1 lps
140 mm
1 m/s
1+212 m
1+366 m
154 m
5
1420 m
1412 m
8m
7
Remarks
CWR
outlet
outlet
Goole map
Goole map
0.01500 sqm
1.41 m/s
O.K
1.15 m/100m
1.771 m
0.08 m
0.1
0.01 m
0.05 m
1.90 m
O.K.
nals D2 Field, Design Manual Volume 1
HazenWilliams
equation.
S/N
Table 1 :Design table for Concrete Lining
Canal Section Design
Notation
q
q
B
mH:1V
Unit
lps
m3
m
Calculation Process
Base on CWR
Base on CWR
Proposed
Proposed
m/m
Assumed
Standard
Standard
m
Assumed
1
2
3
4
5
6
7
Estimated Discharge
Proposed Bed width
Canal Side Slope
Canal Longitudional slope
B/D Ratio
Manning's roughness co-efficient
Minimum Free Board
1
2
3
Calculation
Proposed water depth
Bed width
Required X-Area
D
B
A
m
m
m2
4
5
Wetted perimeter
Hydraulic Radius
P
R
m
m
6
7
Velocity
Designed Discharge
Does the Design Discharge Passed
Canal Height
Adopted Canal Height
Froud Number
Characteristics of Flow
The final Section of the canal is 0.3mx0.3m
V
Q
m/s
m3
H
H
Fr
8
9
10
S/N
Table 2 :Design table for Earthen Canal
Canal Section Design
B:D
n
Fb
(B +m D)x D
(B +2x(1+m2)0.5xD)
A/P
1/n x R2/3 S0.5
VxA
Check: Q>=q
Fb+D
V2/gD
Sub-Critical Flow
Notation
q
q
B
mH:1V
Unit
lps
m3
m
Calculation Process
Base on CWR
Base on CWR
Proposed
Proposed
m/m
Assumed
Standard
Standard
m
Assumed
1
2
3
4
5
6
7
Estimated Discharge
Proposed Bed width
Canal Side Slope
Canal Longitudional slope
B/D Ratio
Manning's roughness co-efficient
Minimum Free Board
1
2
3
Calculation
Proposed water depth
Bed width
Required X-Area
D
B
A
m
m
m2
4
5
Wetted perimeter
Hydraulic Radius
P
R
m
m
6
7
Velocity
Designed Discharge
Does the Design Discharge Passed
Canal Height
Adopted Canal Height
V
Q
m/s
m3
H
H
Assume for trail
Proposed
B:D
n
Fb
Assume for trail
Proposed
(B +m D)x D
(B +2x(1+m2)0.5xD)
A/P
1/n x R2/3 S0.5
VxA
Check: Q>=q
Fb+D
9
10
Froud Number
Characteristics of Flow
The final Section of the canal is 0.3mx0.3m
Fr
V2/gD
Sub-Critical Flow
Calculation
24.6
0.0246
0.3
0.0:1
0.01
2
0.016
0.1
0.090
0.300
0.027
0.480
0.056
0.918
0.025
YES
0.190
0.300
0.0077
Sub-Critical Flow
Calculation
24.6
0.0246
0.3
1.0:1
0.01
2
0.025
0.1
0.116
0.300
0.048
0.629
0.077
0.724
0.035
YES
0.216
0.300
0.0062
Sub-Critical Flow