(601-603)   DESIGN OF TRAPEZOIDAL COMBINED FOOTINGS
GIVEN: b1 (mm)         b2 (mm)     D1 (kN)     L1 (kN)      D2 (kN)    L2 (kN)   S (m)
        (from P501)  480             530        625         475          685        585      4.90
              601.     For the column dimensions and axial loading given in Problem 501, design a trapezoidal comb
                       columns. The footing cannot extend beyond both the exterior and interior columns. The colum
                       center. Use f c ' = 28 MPa. f y = 414 MPa, q a = 150 kPa.
            Step 1. Proportion footing dimensions
                       a) Column loads
                                        P1        1270
                                        P2        1100
                                        R         2370
                       b) Weight of footing = 10% of column loads
                                        W          237         use        237
                       c) Required footing area
                                        A         17.38
                       d) From area of trapezoid,
                                      a+b         6.431
                       e) Location of resultant from exterior column:
                                         x        2.274
                                        xc        2.539
                       f) From centroid of trapezoid
                                         a        2.632
                                        b         3.799
            (Values may be reversed to maintain consistency with lab manual)
            Step 2. Compute factored loads
                       a) Column loads
                                        P1        1758                  Factors:    1.2      1.6
                                        P2        1510
                       b) Ultimate upward pressure
                                        qu       188.0
                       c) Equivalent linear pressure
                                        qa        495
                                        qb        714
                       d) Slope of pressure line
                           s        40.52
Step 3. Draw shear and moment diagrams
           a) Shear equation
                            V       714x - 20.26x^2 + C1
           b) Shear ordinates
                          x(m)       C1(kN)       V(kN)
                          0.00         0          0.00
                         0.265         0         187.79
                       0.265 + dx -1758        -1570.21
                          0.53       -1758     -1385.27
                         4.925       -1758      1267.03
                         5.165       -1758      1389.33
                       5.165 + dx -3268         -120.67
                         5.405       -3268        0.00
           c) Locate point of zero shear
                           x1        2.663
           d) Moment equation
                           M         357x^2 - 6.753x^3 + C1x' + C2
                         x(m)       C1(kN)      x'(m)     M(kN-m)
                          0.00        0          0.00         0.00
                         0.265        0          0.00        24.94
                         0.530      -1758       0.265      -366.59
                         2.663      -1758       2.398     -1811.52
                         4.925      -1758       4.660      -339.73
                         5.165      -1758       4.900       -20.91
                                    -1758       5.140
                         5.405                             -35.42
                                    -1510        0.24
Step 4. Solve "d" for beam shear at small end
           a) Equation of width of footing
                             z           1.167 - 0.216x
                            b'           3.799 - 0.216x
           b) Width at critical section for beam shear
                             x              4.925 - d
                            b'          2.735 + 0.216d
           c) Shear force at x = 4.925 - d
                            Vu            714x - 20.26x^2 - 1758
                            Vu         1267.03-514.44d-20.26d^2
           d) Shear capacity at critical section
                           φVc             2050.24d + 161.92d^2
           e) Equate factored shear to shear capacity
                        Vu ≤ φVc
                         1267.03-514.44d-20.26d^2 = 2050.24d + 161.92d^2
                            d       0.478           500
                       Try d = 500 mm
Step 5. Check wide beam shear at large end
           a) Width of footing at critical section
                            x          1.030
                           b'          3.577
           b) Shear force at x = 1.03 m
                           Vu         1044.07
           c) Shear capacity at critical section
                          φVc         1340.71      OK
Step 6. Check punching shear at exterior column
           a) Perimeter of critical section
                            e          0.780
                            f          1.030
                           b0          2.590
           b) Shear force
                           Vu         1606.96
           c) Shear capacity at critical section
                          φVc         1941.54      OK
Step 7. Check punching shear at interior column
           a) Perimeter of critical section
                            g          0.730
                            h          0.980
                           b0          2.440
           b) Shear force
                           Vu         1375.50
           c) Shear capacity at critical section
                          φVc         1829.10      OK
Step 8. Design negative steel in long direction
           a) Factored moment at x = 2.663 m
                           Mu      1811.52 (from M-diagram)
                            b'      3.224
           b) Moment resistance coefficient
                            Ru      2.497
           c) Strength ratio
                            m      17.395
           d) Required steel ratio
                             ρ     0.00639
           e) Minimum steel ratio
                           ρmin      0.00320        ≥      0.00338
                           4/3 ρ       N/A
                Therefore use ρ = 0.00639
           f) Steel area
                            As        10301
                            db          25         Ab       491
                             n         21.0
                        use 21 - 25 mm dia. bars
           g) Check spacing of bars
                             s          98         OK!
                             s         156         OK!
           h) Check development length
                          Ld,furn      2588        OK!
Step 9. Design short direction steel at exterior column
           a) Band width
                            b        0.905
                           b2        3.604
                          bave       3.702
                          Lave       1.586
           b) Equivalent upward soil pressure
                           qu         525
           c) Design moment
                           Mu       597.56
           d) Moment resistance coefficient
                           Ru        3.252
           e) Required steel ratio
                            ρ       0.00848
           f) Minimum steel ratio
                          ρmin      0.00320         ≥      0.00338
                          4/3 ρ       N/A
                Therefore use ρ = 0.00848
           g) Steel area
                           As         3645
                           db          28          Ab       616
                            n          5.9
                       use 6 - 28 mm dia. bars
           h) Check spacing of bars
                            s         132          OK!
           i) Check development length
                         Ld,furn      1511         OK!
Step 10. Design short direction steel at interior column
           a) Band width
                            b        0.855
                           x3        4.550
                           b3        2.816
                          bave       2.724
                          Lave       1.122
           b) Equivalent upward soil pressure
                           qu         648
           c) Design moment
                           Mu       348.74
           d) Moment resistance coefficient
                           Ru        2.009
           e) Required steel ratio
                            ρ       0.00508
           f) Minimum steel ratio
                          ρmin      0.00320       ≥     0.00338
                          4/3 ρ       N/A
                Therefore use ρ = 0.00508
           g) Steel area
                           As         2063
                           db          20        Ab      314
                            n          6.6
                       use 7 - 20 mm dia. bars
           h) Check spacing of bars
                            s         107        OK!
           i) Check development length
                         Ld,furn      1047       OK!
Step 11. Design steel for remaining zones
           a) Steel area
                         ρmin      0.00320       ≥      0.00338
                           As        1606
                           db         20        Ab       314
                            n         5.1
                       use 6 - 20 mm dia. bars/meter
Step 12. Compute development lengths
           a) For 25 mm diameter tension bars
                          α         1.0          β        1.0     γ   1.0
                           =         3.00    ≤    2.5
                               =     28.17
                       simplified formula:
                               =
                            =         46.94   (controls)            fraction used    3/5
                          Ld       1174 (controls)
                       min Ld       300
           b) For 28 mm diameter tension bars
                          α         1.0       β             1.0           γ          1.0
                        =              2.68   ≤    2.5
                            =         28.17
                      simplified formula:
                            =         46.94   (controls)            fraction used    3/5
                          Ld       1314 (controls)
                        min Ld      300
           c) For 20 mm diameter tension bars
                           α        1.0       β             1.0           γ          1.0
                        =              3.75   ≤    2.5
                            =         28.17
                      simplified formula:
                            =         37.55   (controls)            fraction used   12/25
                          Ld           751    (controls)
                         min Ld        300
Step 13. Check weight of footing
           a) thickness of footing
                             t         600
           b) volume of footing
                            Vf        10.43
           c) weight of footing
                            Wf       246.15       <        237.00   NOT OK!!!
                      Wf,assumed       237
Step 14. Draw the details
                                21-25 mm φ bars
                    21-25 mm φ bars
               a = 2.632 m                    0.905 m              t = 0.6 m
               b = 3.799 m              3.645 3.645 m
                         6-16 mm φ bars
               t = 0.6 m                      0.855 m
              0.905 m 6 28 φ 3.6456-28
                                   m φ          0.855 m
               6-28 φ 22 20 φ 22-20 φ φ
                                  22-20          7-20 φ
                       7 20 φ     7-20 φ
                      21 25 mm φ bars
                                  21-25 mm φ bars
                       6 16 mm φ bars
                                  6-16 mm φ bars
                                                          a = 2.632 m
b = 3.799 m
               (DRAWING NOT TO SCALE)
                   (DRAWING NOT TO SCALE)
OOTINGS
            fc' (MPa)   fy (MPa)   qa (kPa)         γconc (kN/m3)
                28         414       150                23.6
 501, design a trapezoidal combined footing to support the 2
and interior columns. The columns are spaces S m center to
              685         585       530
              625         475       480                                        0.24
                                                                        s = 4.9 m
                                                                              0.265
                                                                        0.48 m
                                                                        0.53 m
               qa         150                                           L = 5.405 m
               L         5.405
             2370        1100       4.90
             0.265
                          685                           585
               DL                    LL
                          625                           475
               A         17.38
             2.632
             3.799
 714       20.26
                                 P1 = 1758 kN
                                 P2 = 1510 kN
                                 4.9 m
                                 qb = 714 kN/m
                                 qa = 495 kN/m
                                       188          25
                                     -1570        -367
                                     -1385       -1812
                                      1267        -340
                                      1389         -21
-20.26     714      -1758             -121         -35
 357.0     6.753
                              188
                             -1570
                                         -1385
 1.167     0.216                     2.632
 2.632     3.799                     1.167
                                 5.405 - x
 5.405     4.925
 2.735
  714      20.26     1758
1267.03   -514.44   -20.26
749.63    2050.24   161.92
182.18    2564.68   -1267.03
                                     2.632 m
 0.530     0.50                      3.799 m
 3.799     0.216
 714       20.26     1758
 0.530     0.50
 1758      188.0
 0.480     0.50
 1510      188.0
 2.663
 3.799     0.216
1811.52    500
                                     188
  fy       414        f c'     28
                                    -1570
                             -1385
  b      3224     d    500
  b      2632     c    75
  b      3799
2663     1174
0.530    0.500
3.799    0.216
1758
597.56   905     475
17.395   414
  b      905      d    475
  b      905      c    75
1586     1314
0.480     0.500
5.405
3.799     0.216
2.632
1510
348.74    855      475
17.395    414
  b       855       d    475
  b       855       c    75
1122      751
 fy        414     fc'   28
         0.00338
  λ        1.0
                         db    25
λ    1.0
                 db     28
λ    1.0
                 db     20
d   500     c    100
a   2.632   b   3.799   L    5.405
db   16   Ab   201   (bottom bars)
   1389
1267
   1389
1267