0% found this document useful (0 votes)
131 views11 pages

Irgp 35 B 60 PD

This document provides specifications for an IGBT module with an ultrafast soft recovery diode. The IGBT is rated for 600V and can handle continuous currents up to 60A at 25°C or 34A at 100°C. It features low saturation voltage, low gate charge, and minimal tail current. Maximum power dissipation is 308W at 25°C and 123W at 100°C. Electrical characteristics including breakdown voltage, saturation voltage, switching losses and times are provided.

Uploaded by

flywheel2006
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
131 views11 pages

Irgp 35 B 60 PD

This document provides specifications for an IGBT module with an ultrafast soft recovery diode. The IGBT is rated for 600V and can handle continuous currents up to 60A at 25°C or 34A at 100°C. It features low saturation voltage, low gate charge, and minimal tail current. Maximum power dissipation is 308W at 25°C and 123W at 100°C. Electrical characteristics including breakdown voltage, saturation voltage, switching losses and times are provided.

Uploaded by

flywheel2006
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

PD - 94623B

SMPS IGBT IRGP35B60PD


WARP2 SERIES IGBT WITH
ULTRAFAST SOFT RECOVERY DIODE
C VCES = 600V
Applications VCE(on) typ. = 1.85V
• Telecom and Server SMPS @ VGE = 15V IC = 22A
• PFC and ZVS SMPS Circuits
• Uninterruptable Power Supplies Equivalent MOSFET
• Consumer Electronics Power Supplies G
Parameters
RCE(on) typ. = 84mΩ
Features E
• NPT Technology, Positive Temperature Coefficient
ID (FET equivalent) = 35A
n-channel
• Lower VCE(SAT)
• Lower Parasitic Capacitances
• Minimal Tail Current
• HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode
• Tighter Distribution of Parameters
• Higher Reliability
E
C
Benefits G
• Parallel Operation for Higher Current Applications
• Lower Conduction Losses and Switching Losses TO-247AC
• Higher Switching Frequency up to 150kHz

Absolute Maximum Ratings


Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 60
IC @ TC = 100°C Continuous Collector Current 34
ICM Pulse Collector Current (Ref. Fig. C.T.4) 120
ILM Clamped Inductive Load Current d 120 A
IF @ TC = 25°C Diode Continous Forward Current 40
IF @ TC = 100°C Diode Continous Forward Current 15
IFRM Maximum Repetitive Forward Current e 60
VGE Gate-to-Emitter Voltage ±20 V
PD @ TC = 25°C Maximum Power Dissipation 308 W
PD @ TC = 100°C Maximum Power Dissipation 123
TJ Operating Junction and -55 to +150
TSTG Storage Temperature Range °C
Soldering Temperature for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)

Thermal Resistance
Parameter Min. Typ. Max. Units
RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) ––– ––– 0.41 °C/W
RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 1.7
RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 –––
RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40
Weight ––– 6.0 (0.21) ––– g (oz)

1 www.irf.com
8/18/04
IRGP35B60PD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Ref.Fig
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 — — V VGE = 0V, IC = 500µA
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.78 — V/°C VGE = 0V, IC = 1mA (25°C-125°C)
RG Internal Gate Resistance — 1.7 — Ω 1MHz, Open Collector
— 1.85 2.15 IC = 22A, VGE = 15V 4, 5,6,8,9
VCE(on) Collector-to-Emitter Saturation Voltage — 2.25 2.55 V IC = 35A, VGE = 15V
— 2.37 2.80 IC = 22A, VGE = 15V, TJ = 125°C
— 3.00 3.45 IC = 35A, VGE = 15V, TJ = 125°C
VGE(th) Gate Threshold Voltage 3.0 4.0 5.0 V IC = 250µA 7,8,9
∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -10 — mV/°C VCE = VGE, IC = 1.0mA
gfe Forward Transconductance — 36 — S VCE = 50V, IC = 22A, PW = 80µs
ICES Collector-to-Emitter Leakage Current — 3.0 375 µA VGE = 0V, VCE = 600V
— 0.35 — mA VGE = 0V, VCE = 600V, TJ = 125°C
VFM Diode Forward Voltage Drop — 1.30 1.70 V IF = 15A, VGE = 0V 10

— 1.20 1.60 IF = 15A, VGE = 0V, TJ = 125°C


IGES Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V, VCE = 0V

Switching Characteristics @ TJ = 25°C (unless otherwise specified)


Parameter Min. Typ. Max. Units Conditions Ref.Fig
Qg Total Gate Charge (turn-on) — 160 240 IC = 22A 17
Qgc Gate-to-Collector Charge (turn-on) — 55 83 nC VCC = 400V CT1

Qge Gate-to-Emitter Charge (turn-on) — 21 32 VGE = 15V


Eon Turn-On Switching Loss — 220 270 IC = 22A, VCC = 390V CT3
Eoff Turn-Off Switching Loss — 215 265 µJ VGE = +15V, RG = 3.3Ω, L = 200µH
Etotal Total Switching Loss — 435 535 TJ = 25°C f
td(on) Turn-On delay time — 26 34 IC = 22A, VCC = 390V CT3
tr Rise time — 6.0 8.0 ns VGE = +15V, RG = 3.3Ω, L = 200µH
td(off) Turn-Off delay time — 110 122 TJ = 25°C f
tf Fall time — 8.0 10
Eon Turn-On Switching Loss — 410 465 IC = 22A, VCC = 390V CT3
Eoff Turn-Off Switching Loss — 330 405 µJ VGE = +15V, RG = 3.3Ω, L = 200µH 11,13
Etotal Total Switching Loss — 740 870 TJ = 125°C f WF1,WF2
td(on) Turn-On delay time — 26 34 IC = 22A, VCC = 390V CT3
tr Rise time — 8.0 11 ns VGE = +15V, RG = 3.3Ω, L = 200µH 12,14
td(off) Turn-Off delay time — 130 150 TJ = 125°C f WF1,WF2
tf Fall time — 12 16
Cies Input Capacitance — 3715 — VGE = 0V 16
Coes Output Capacitance — 265 — VCC = 30V
Cres Reverse Transfer Capacitance — 47 — pF f = 1Mhz
Coes eff. Effective Output Capacitance (Time Related) g — 135 — VGE = 0V, VCE = 0V to 480V 15
Coes eff. (ER) Effective Output Capacitance (Energy Related) g — 179 —
TJ = 150°C, IC = 120A 3

RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V CT2

Rg = 22Ω, VGE = +15V to 0V


trr Diode Reverse Recovery Time — 42 60 ns TJ = 25°C IF = 15A, VR = 200V, 19

— 74 120 TJ = 125°C di/dt = 200A/µs


Qrr Diode Reverse Recovery Charge — 80 180 nC TJ = 25°C IF = 15A, VR = 200V, 21

— 220 600 TJ = 125°C di/dt = 200A/µs


Irr Peak Reverse Recovery Current — 4.0 6.0 A TJ = 25°C IF = 15A, VR = 200V, 19,20,21,22

— 6.5 10 TJ = 125°C di/dt = 200A/µs CT5

Notes:
 RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 1.85V and IC =22A. ID (FET Equivalent) is the equivalent MOSFET ID
rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
‚ VCC = 80% (VCES), VGE = 20V, L = 100 µH, RG = 3.3Ω.
ƒ Pulse width limited by max. junction temperature.
„ Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06.
… Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES.
Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES.

2 www.irf.com
IRGP35B60PD
70 350

60 300

50 250

200

Ptot (W)
40
IC (A)

30 150

20 100

10 50

0 0
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
T C (°C) T C (°C)

Fig. 1 - Maximum DC Collector Current vs. Fig. 2 - Power Dissipation vs. Case
Case Temperature Temperature
1000 70
VGE = 15V
60 VGE = 12V
VGE = 10V
50 VGE = 8.0V
100 VGE = 6.0V

40
ICE (A)
IC A)

30
10
20

10

1 0
10 100 1000 0 1 2 3 4 5
VCE (V) VCE (V)

Fig. 3 - Reverse Bias SOA Fig. 4 - Typ. IGBT Output Characteristics


TJ = 150°C; VGE =15V TJ = -40°C; tp = 80µs
70 70
VGE = 15V VGE = 15V
60 60
VGE = 12V VGE = 12V
VGE = 10V VGE = 10V
50 VGE = 8.0V 50 VGE = 8.0V
VGE = 6.0V VGE = 6.0V
40 40
ICE (A)

ICE (A)

30 30

20 20

10 10

0 0
0 1 2 3 4 5 0 1 2 3 4 5
VCE (V) VCE (V)

Fig. 5 - Typ. IGBT Output Characteristics Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs TJ = 125°C; tp = 80µs
www.irf.com 3
IRGP35B60PD
800 10

700 T J = 25°C 9
T J = 125°C
600 8

7
500
ICE = 11A

VCE (V)
ICE (A)

6
400 ICE = 22A
5 ICE = 35A
300
4
200
TJ = 125°C 3
100 T J = 25°C 2

0 1
0 5 10 15 20 0 5 10 15 20
VGE (V) VGE (V)

Fig. 7 - Typ. Transfer Characteristics Fig. 8 - Typical VCE vs. VGE


VCE = 50V; tp = 10µs TJ = 25°C

10 100

8 urrent -I (A)
F

7
ICE = 11A
ardC
VCE (V)

6
ICE = 22A
orw

10

5 ICE = 35A
InstantaneousF

TJ = 150°C
4 TJ = 125°C

TJ = 25°C
3

1 1
0.8 1.2 1.6 2.0 2.4
0 5 10 15 20 Forward Voltage Drop - V FM (V)

VGE (V)

Fig. 9 - Typical VCE vs. VGE Fig. 10 - Typ. Diode Forward Characteristics
TJ = 125°C tp = 80µs

800 1000

700

600 td OFF
EON
Swiching Time (ns)

100
500
Energy (µJ)

400 tdON
EOFF
300 tF
10
200
tR
100

0 1
0 5 10 15 20 25 30 35 40 0 10 20 30 40

IC (A) IC (A)

Fig. 11 - Typ. Energy Loss vs. IC Fig. 12 - Typ. Switching Time vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V. TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V.
Diode clamp used: 30ETH06 (See C.T.3) Diode clamp used: 30ETH06 (See C.T.3)
4 www.irf.com
IRGP35B60PD
800 1000

700
tdOFF
600
EON

Swiching Time (ns)


100
500
Energy (µJ)

tdON
400
EOFF
300 tF
10
200
tR
100

0 1
0 10 20 30 40 50 0 10 20 30 40 50

RG (Ω) RG ( Ω)

Fig. 13 - Typ. Energy Loss vs. RG Fig. 14 - Typ. Switching Time vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 22A; VGE = 15V TJ = 125°C; L = 200µH; VCE = 390V, ICE = 22A; VGE = 15V
Diode clamp used: 30ETH06 (See C.T.3) Diode clamp used: 30ETH06 (See C.T.3)
30 10000

Cies
25

20
Capacitance (pF)

1000
Eoes (µJ)

15 Coes

10 100

Cres
5

0 10
0 100 200 300 400 500 600 700 0 20 40 60 80 100
VCE (V) VCE (V)

Fig. 15- Typ. Output Capacitance Fig. 16- Typ. Capacitance vs. VCE
Stored Energy vs. VCE VGE= 0V; f = 1MHz

16 1.4

14

12 400V
Normalized V CE(on) (V)

1.2
10
VGE (V)

6
1.0
4

0 0.8
0 50 100 150 200 -50 0 50 100 150 200
Q G , Total Gate Charge (nC) T J (°C)

Fig. 17 - Typical Gate Charge vs. VGE Fig. 18 - Normalized Typ. VCE(on)
ICE = 22A vs. Junction Temperature
IC = 22A, VGE= 15V
www.irf.com 5
IRGP35B60PD
100 100

VR = 200V VR = 200V
TJ = 125°C TJ = 125°C
TJ = 25°C TJ = 25°C

80

I F = 30A

I IRRM - (A)
t rr - (ns)

I F = 30A
IF = 15A
60 10
I F = 15A

I F = 5.0A
40

I F = 5.0A

20 1
100 1000 100 1000
di f /dt - (A/µs) di f /dt - (A/µs)

Fig. 19 - Typical Reverse Recovery vs. dif/dt Fig. 20 - Typical Recovery Current vs. dif/dt

800 1000
VR = 200V
VR = 200V
TJ = 125°C
TJ = 125°C
TJ = 25°C
TJ = 25°C

600
di(rec)M/dt - (A/µs)

IF = 30A
Q RR - (nC)

I F = 5.0A
400
I F = 15A I F = 15A

I F = 30A
IF = 5.0A

200

0 100
100 1000 100 1000
di f /dt - (A/µs) di f /dt - (A/µs)

Fig. 21 - Typical Stored Charge vs. dif/dt Fig. 22 - Typical di(rec)M/dt vs. dif/dt,

6 www.irf.com
IRGP35B60PD
1

D = 0.50
Thermal Response ( Z thJC )

0.1 0.20

0.10
0.05
Ri (°C/W) τi (sec)
R1 R2 R3
R1 R2 R3
0.01 0.01 τJ τC
τJ τ
0.139 0.000257
0.02 τ1 τ2 τ3
τ1 τ2 τ3 0.077 0.001418
Ci= τi/Ri 0.194 0.020178
Ci= i/Ri
0.001
SINGLE PULSE Notes:
( THERMAL RESPONSE ) 1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006 1E-005 0.0001 0.001 0.01 0.1

t1 , Rectangular Pulse Duration (sec)

Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)


10
Thermal Response ( Z thJC )

1 D = 0.50
0.20
0.10
Ri (°C/W) τi (sec)
R1 R2 R3
R1 R2 R3
0.1 0.05
τJ τC
τJ τ
0.363 0.000112
0.01 τ1 τ2 τ3
τ1 τ2 τ3 0.864 0.001184
0.02
Ci= τi/Ri 0.473 0.032264
0.01 Ci= i/Ri
Notes:
SINGLE PULSE
1. Duty Factor D = t1/t2
( THERMAL RESPONSE )
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006 1E-005 0.0001 0.001 0.01 0.1 1

t1 , Rectangular Pulse Duration (sec)

Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)

www.irf.com 7
IRGP35B60PD
L

L
VCC
DUT 80 V DUT
0 480V
1K Rg

Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit

VCC
PFC diode L R=
ICM

DUT /
VCC
DRIVER DUT VCC
Rg Rg

Fig.C.T.3 - Switching Loss Circuit Fig.C.T.4 - Resistive Load Circuit

REVERSE RECOVERY CIRCUIT

VR = 200V

0.01 Ω
L = 70µH
D.U.T.

D
dif/dt
ADJUST IRFP250
G

Fig. C.T.5 - Reverse Recovery Parameter


Test Circuit

8 www.irf.com
IRGP35B60PD
450 45 450 45

400 40 400 40
TEST CURRENT
350 tf 35 350 35

300 30 300 30
90% ICE tr
250 25 250 25
VCE (V)

VCE (V)
ICE (A)

ICE (A)
90% test current
200 20 200 20
5% VCE
10% test current
150 15 150 15

100 5% ICE 10 100 10

50 5 50 5% VCE 5

0 0 0 Eon Loss 0
Eoff Loss
-50 -5 -50 -5
-0.20 0.00 0.20 0.40 0.60 0.80 9.00 9.20 9.40 9.60
Time(µs) Time (µs)

Fig. WF1 - Typ. Turn-off Loss Waveform Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 25°C using Fig. CT.3 @ TJ = 25°C using Fig. CT.3

3
trr
IF
ta tb
0

4
Q rr
2
I RRM 0.5 I RRM
di(rec)M/dt 5

0.75 I RRM

1 di f /dt

1. dif/dt - Rate of change of current 4. Qrr - Area under curve defined by trr
through zero crossing and IRRM
trr X IRRM
2. I RRM - Peak reverse recovery current Qrr =
2
3. trr - Reverse recovery time measured
from zero crossing point of negative 5. di(rec)M/dt - Peak rate of change of
going IF to point where a line passing current during tb portion of trr
through 0.75 IRRM and 0.50 IRRM
extrapolated to zero current

Fig. WF3 - Reverse Recovery Waveform and


Definitions

www.irf.com 9
IRGP35B60PD

TO-247AC Package Outline Dimensions are shown in millimeters (inches)

TO-247AC Part Marking Information


EXAMPLE: T HIS IS AN IRFPE30
WITH AS SEMBLY PART NUMBER
LOT CODE 5657 INTERNATIONAL
ASSEMBLED ON WW 35, 2000 RECTIFIER IRFPE30

IN T HE ASSEMBLY LINE "H" LOGO 035H


56 57
Note: "P" in assembly line DATE CODE
position indicates "Lead-Free" ASSEMBLY YEAR 0 = 2000
LOT CODE WEEK 35
LINE H

Data and specifications subject to change without notice.


This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/04
10 www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/

You might also like