You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Questo progetto Unity utilizza ML-Agents (PPO) per addestrare un agente veicolare in una città appartenente al pacchetto di SyntyStudios POLYGON - City Pack. L'agente cerca di: Schivare i gatti; seguire la segnaletica orizzontale; mantenere la corsia di sinistra; effettuare parcheggi nel punto di interesse più vicino.
Target Strike game is an unity based compititive game. This game is created for CS662 - Mobile VR & AI course offered at IIT Mandi. Here the source files are given.
Final task for my Reinforcement Learning class in Deusto. The research paper discuss examples of using ML-Agents toolkit of Unity. Paper is avaible at:
A car agent that has been trained using reinforcement learning to complete successful laps on a scaled-down version of the Circuit de Barcelona-Catalunya.
Proyecto de entrenamiento de modelos de IA con aprendizaje por refuerzo (reinforcement learning) en Unity. Corresponde al trabajo práctico grupal de la materia INTELIGENCIA ARTIFICIAL (9525) de la Facultad de Ingeniería de la Universidad de Buenos Aires. Link a la demo (el comportamiento de los agentes puede verse afectado de forma negativa):
An implementation of the Proximal Policy Optimization (PPO) algorithm. This implementation is based on the example available on the official Keras website. The goal of this project is to provide a .NET-based solution for running PPO algorithms.
Deep Reinforcement Learning techniques (PPO) applied to Swarm Robotics, focusing on defining stimulating environments and communication patterns in Search and Rescue scenario