Skip to content
/ DSE Public

DSE: Discriminating Suprasphere Embedding for Object Localization and Fine-Grained Visual Categorization

Notifications You must be signed in to change notification settings

wywd/DSE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DSE

This repository contains the code for the paper "Discriminative Suprasphere Embedding for Fine-Grained Visual Categorization"

Requirements:

CUB-200-2011 dataset and pretrained ResNet-101 model:

  • Download CUB-200-2011 {http://www.vision.caltech.edu/visipedia/CUB-200-2011.html }
  • Download pretrained ResNet-101 model {https://github.com/facebook/fb.resnet.torch/tree/master/pretrained }
  • Arrange the dataset so that it contains a \train and a \val directory, which each contain sub-directories for every label. For example:
    "train/<label1>/<image.jpg>  
     train/<label2>/<image.jpg>  
     val/<label1>/<image.jpg>  
     val/<label2>/<image.jpg>"  
  • To achieve this step you can use these files,
    \tmp\dataset\move.py    
    \tmp\dataset\train_images.txt    
    \tmp\dataset\test_images.txt    
  • Place the rearranged dataset in tmp\dataset\CUB
  • Place the pretrained ResNet-101 model in tmp\models

Training:

  • Run the script inside script\script.txt
  • Get the dataset index file tmp\dataset\cubsphere.t7
  • Get the fine-tuned model tmp\result\cub_fine_tuned_model\model_best.t7
  • Obtain classification accuracy

Visualization:

  • Place the original downloaded dataset in visualization\data\CUB_200_2011
  • Place the dataset index file tmp\dataset\cubsphere.t7 in visualization\data
  • Place the fine-tuned model tmp\result\cub_fine_tuned_model\model_best.t7 in visualization\model
  • Run the scripts under visualization\ in sequence according to the file name number
  • Obtain Phase Activation Map (PAM), Class Contribution Map (CCM), Mean IoU, Discriminative localization results.

About

DSE: Discriminating Suprasphere Embedding for Object Localization and Fine-Grained Visual Categorization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published