Dates are inconsistent

Dates are inconsistent

98 results sorted by ID

Possible spell-corrected query: art
2025/181 (PDF) Last updated: 2025-02-13
Improved NTT and CRT-based RNR Blinding for Side-Channel and Fault Resistant Kyber
Max Duparc, Mounir Taha
Public-key cryptography

In this paper, we build upon the blinding methods introduced in recent years to enhance the protection of lattice-based cryptographic schemes against side-channel and fault injection attacks. Specifically, we propose a cost-efficient blinded Number Theoretic Transform (NTT) that impedes the convergence of Soft Analytical Side-Channel Attacks (SASCA), even with limited randomness sampling. Additionally, we extend the blinding mechanism based on the Chinese Remainder Theorem (CRT) and ...

2024/2042 (PDF) Last updated: 2024-12-18
A Note on Isogeny Group Action-Based Pseudorandom Functions
Yi-Fu Lai
Attacks and cryptanalysis

In PKC'24, de Saint Guilhem and Pedersen give a pseudorandom function basing on a relaxed group action assumption in the semi-honest setting. Basing on the assumption, they build an oblivious pseudorandom function (OPRF). Later, a recent paper by Levin and Pedersen uses the same function to build a verifiable random function (VRF), using the same assumption. We give a structural attack on this problem by reducing it to a few group action inverse problems (GAIP/DLog) over small subgroups....

2024/1972 (PDF) Last updated: 2024-12-13
RoK, Paper, SISsors – Toolkit for Lattice-based Succinct Arguments
Michael Klooß, Russell W. F. Lai, Ngoc Khanh Nguyen, Michał Osadnik
Cryptographic protocols

Lattice-based succinct arguments allow to prove bounded-norm satisfiability of relations, such as $f(\vec{s}) = \vec{t} \bmod q$ and $\|\vec{s}\|\leq \beta$, over specific cyclotomic rings $\mathcal{O}_\mathcal{K}$, with proof size polylogarithmic in the witness size. However, state-of-the-art protocols require either 1) a super-polynomial size modulus $q$ due to a soundness gap in the security argument, or 2) a verifier which runs in time linear in the witness size. Furthermore,...

2024/1903 (PDF) Last updated: 2024-12-15
Trustworthy Approaches to RSA: Efficient Exploitation Strategies Based on Common Modulus
Mahdi Mahdavi, Navid Abapour, Zahra Ahmadian
Public-key cryptography

With the increasing integration of crowd computing, new vulnerabilities emerge in widely used cryptographic systems like the RSA cryptosystem, whose security is based on the factoring problem. It is strongly advised to avoid using the same modulus to produce two pairs of public-private keys, as the cryptosystem would be rendered vulnerable to common modulus attacks. Such attacks can take two forms: one that aims to factorize the common modulus based on one key pair and the other that aims to...

2024/1734 (PDF) Last updated: 2024-10-23
Optimizing Message Range and Ciphertext Storage in GSW Encryption Using CRT and PVW-like Compression Scheme
Kung-Wei Hu, Huan-Chih Wang, Ja-Ling Wu
Public-key cryptography

This paper explores advancements in the Gentry-Sahai-Waters (GSW) fully homomorphic encryption scheme, addressing challenges related to message data range limitations and ciphertext size constraints. We introduce a novel approach utilizing the Chinese Remainder Theorem (CRT) for message decomposition, significantly expanding the allowable message range to the entire plaintext space. This method enables unrestricted message selection and supports parallel homomorphic operations without...

2024/1307 (PDF) Last updated: 2025-02-19
On Algebraic Homomorphic Encryption and its Applications to Doubly-Efficient PIR
Hiroki Okada, Rachel Player, Simon Pohmann, Christian Weinert
Foundations

The Doubly-Efficient Private Information Retrieval (DEPIR) protocol of Lin, Mook, and Wichs (STOC'23) relies on a Homomorphic Encryption (HE) scheme that is algebraic, i.e., whose ciphertext space has a ring structure that matches the homomorphic operations. While early HE schemes had this property, modern schemes introduced techniques to manage noise growth. This made the resulting schemes much more efficient, but also destroyed the algebraic property. In this work, we study the...

2024/1125 (PDF) Last updated: 2024-07-10
Revisiting PACD-based Attacks on RSA-CRT
Guillaume Barbu, Laurent Grémy, Roch Lescuyer
Attacks and cryptanalysis

In this work, we use some recent developments in lattice-based cryptanalytic tools to revisit a fault attack on RSA-CRT signatures based on the Partial Approximate Common Divisor (PACD) problem. By reducing the PACD to a Hidden Number Problem (HNP) instance, we decrease the number of required faulted bits from 32 to 7 in the case of a 1024-bit RSA. We successfully apply the attack to RSA instances up to 8192-bit and present an enhanced analysis of the error-tolerance in the Bounded Distance...

2024/1105 (PDF) Last updated: 2024-07-25
A New CRT-based Fully Homomorphic Encryption
Anil Kumar Pradhan
Cryptographic protocols

We have proposed a novel FHE scheme that uniquely encodes the plaintext with noise in a way that prevents the increasing noise from overflowing and corrupting the plaintext. This allows users to perform computations on encrypted data smoothly. The scheme is constructed using the Chinese Remainder Theorem (CRT), supporting a predefined number of modular operations on encrypted plaintext without the need for bootstrapping. Although FHE recently became popular after Gentry's work and various...

2024/909 (PDF) Last updated: 2024-06-07
Approximate CRT-Based Gadget Decomposition and Application to TFHE Blind Rotation
Olivier Bernard, Marc Joye
Implementation

One of the main issues to deal with for fully homomorphic encryption is the noise growth when operating on ciphertexts. To some extent, this can be controlled thanks to a so-called gadget decomposition. A gadget decomposition typically relies on radix- or CRT-based representations to split elements as vectors of smaller chunks whose inner products with the corresponding gadget vector rebuilds (an approximation of) the original elements. Radix-based gadget decompositions present the advantage...

2024/164 (PDF) Last updated: 2024-10-03
Faster BGV Bootstrapping for Power-of-Two Cyclotomics through Homomorphic NTT
Shihe Ma, Tairong Huang, Anyu Wang, Xiaoyun Wang
Public-key cryptography

Power-of-two cyclotomics is a popular choice when instantiating the BGV scheme because of its efficiency and compliance with the FHE standard. However, in power-of-two cyclotomics, the linear transformations in BGV bootstrapping cannot be decomposed into sub-transformations for acceleration with existing techniques. Thus, they can be highly time-consuming when the number of slots is large, degrading the advantage brought by the SIMD property of the plaintext space. By exploiting the...

2024/079 Last updated: 2024-01-23
On Modular Algorithms and Butterfly Operations in Number Theoretic Transform
Yanze Yang, Yiran Jia, Guangwu Xu
Implementation

Number theoretic transform (NTT) has been a very useful tool in computations for number theory, algebra and cryptography. Its performance affects some post-quantum cryptosystems. In this paper, we discuss the butterfly operation of NTT. This basic module of NTT requires heavy modular arithmetics. Montgomery reduction is commonly used in this setting. Recently several variants of Montgomery have been proposed for the purpose of speeding up NTT. We observe that the Chinese remainder...

2024/032 (PDF) Last updated: 2024-04-30
Verifiable FHE via Lattice-based SNARKs
Shahla Atapoor, Karim Baghery, Hilder V. L. Pereira, Jannik Spiessens
Cryptographic protocols

Fully Homomorphic Encryption (FHE) is a prevalent cryptographic primitive that allows for computation on encrypted data. In various cryptographic protocols, this enables outsourcing computation to a third party while retaining the privacy of the inputs to the computation. However, these schemes make an honest-but-curious assumption about the adversary. Previous work has tried to remove this assumption by combining FHE with Verifiable Computation (VC). Recent work has increased the...

2023/771 (PDF) Last updated: 2024-09-20
Revisiting Key Decomposition Techniques for FHE: Simpler, Faster and More Generic
Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama, Sandra Guasch, Dimitar Jetchev
Public-key cryptography

Ring-LWE based homomorphic encryption computations in large depth use a combination of two techniques: 1) decomposition of big numbers into small limbs/digits, and 2) efficient cyclotomic multiplications modulo $X^N + 1$. It was long believed that the two mechanisms had to be strongly related, like in the full-RNS setting that uses a CRT decomposition of big numbers over an NTT-friendly family of prime numbers, and NTT over the same primes for multiplications. However, in this setting, NTT...

2023/064 (PDF) Last updated: 2023-12-15
Computation of Hilbert class polynomials and modular polynomials from supersingular elliptic curves
Antonin Leroux
Public-key cryptography

We present several new heuristic algorithms to compute class polynomials and modular polynomials modulo a prime $p$ by revisiting the idea of working with supersingular elliptic curves. The best known algorithms to this date are based on ordinary curves, due to the supposed inefficiency of the supersingular case. While this was true a decade ago, the recent advances in the study of supersingular curves through the Deuring correspondence motivated by isogeny-based cryptography has...

2023/014 (PDF) Last updated: 2023-11-23
Amortized Bootstrapping Revisited: Simpler, Asymptotically-faster, Implemented
Antonio Guimarães, Hilder V. L. Pereira, Barry van Leeuwen
Public-key cryptography

Micciancio and Sorrel (ICALP 2018) proposed a bootstrapping algorithm that can refresh many messages at once with sublinearly many homomorphic operations per message. However, despite the attractive asymptotic cost, it is unclear if their algorithm could ever be practical, which reduces the impact of their results. In this work, we follow their general framework, but propose an amortized bootstrapping that is conceptually simpler and asymptotically cheaper. We reduce the number of...

2022/1704 (PDF) Last updated: 2023-02-02
Some applications of higher dimensional isogenies to elliptic curves (overview of results)
Damien Robert
Foundations

We give some applications of the "embedding Lemma". The first one is a polynomial time (in $\log q$) algorithm to compute the endomorphism ring $\mathrm{End}(E)$ of an ordinary elliptic curve $E/\mathbb{F}_q$, provided we are given the factorisation of $Δ_π$. In particular, this computation can be done in quantum polynomial time. The second application is an algorithm to compute the canonical lift of $E/\mathbb{F}_q$, $q=p^n$, (still assuming that $E$ is ordinary) to precision $m$ in...

2022/1496 (PDF) Last updated: 2022-11-13
Multiplicative Partially Homomorphic CRT Secret Sharing
Shlomi Dolev, Yaniv Kleinman
Foundations

A new CRT-based positive (non-zero) secret-sharing scheme with perfect information-theoretic (PIT) security and multiplicative homomorphism is presented. The scheme is designed to support the evaluation of multiplications of non-zero secrets of multiplicative groups. Our CRT-based scheme is partially homomorphic, supporting homomorphic multiplications. Nevertheless, our scheme has the potential to be regarded as fully homomorphic for practical scenarios, such as bounded-sized multi-cloud...

2022/1163 (PDF) Last updated: 2022-09-06
A Third is All You Need: Extended Partial Key Exposure Attack on CRT-RSA with Additive Exponent Blinding
Yuanyuan Zhou, Joop van de Pol, Yu Yu, François-Xavier Standaert
Attacks and cryptanalysis

At Eurocrypt 2022, May et al. proposed a partial key exposure (PKE) attack on CRT-RSA that efficiently factors $N$ knowing only a $\frac{1}{3}$-fraction of either most significant bits (MSBs) or least significant bits (LSBs) of private exponents $d_p$ and $d_q$ for public exponent $e \approx N^{\frac{1}{12}}$. In practice, PKE attacks typically rely on the side-channel leakage of these exponents, while a side-channel resistant implementation of CRT-RSA often uses additively blinded exponents...

2022/1095 (PDF) Last updated: 2022-08-24
Toffoli gate count Optimized Space-Efficient Quantum Circuit for Binary Field Multiplication
KIM, SUNYEOP, KIM, INSUNG, Seonggyeom Kim, Seokhie Hong
Implementation

Shor's algorithm solves Elliptic Curve Discrete Logarithm Problem(ECDLP) in polynomial time. To optimize Shor's algorithm for binary elliptic curve, reducing the cost for binary field multiplication is essential because it is most cost-critical basic arithmetic. In this paper, we propose Toffoli gate count optimized space-efficient quantum circuits for binary field $(\mathbb{F}_{2^{n}})$ multiplication. To do so, we take advantage of Karatsuba-like formula and show that its application can...

2022/959 (PDF) Last updated: 2022-07-25
MEGA: Malleable Encryption Goes Awry
Matilda Backendal, Miro Haller, Kenneth G. Paterson
Attacks and cryptanalysis

MEGA is a leading cloud storage platform with more than 250 million users and 1000 Petabytes of stored data. MEGA claims to offer user-controlled, end-to-end security. This is achieved by having all data encryption and decryption operations done on MEGA clients, under the control of keys that are only available to those clients. This is intended to protect MEGA users from attacks by MEGA itself, or by adversaries who have taken control of MEGA’s infrastructure. We provide a detailed...

2022/704 (PDF) Last updated: 2023-05-02
Parameter Optimization & Larger Precision for (T)FHE
Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, Samuel Tap
Public-key cryptography

In theory, Fully Homomorphic Encryption schemes allow users to compute any operation over encrypted data. However in practice, one of the major difficulties lies into determining secure cryptographic parameters that minimize the computational cost of evaluating a circuit. In this paper, we propose a solution to solve this open problem. Even though it mainly focuses on TFHE, the method is generic enough to be adapted to all the current FHE schemes. TFHE is particularly suited, for small...

2022/284 (PDF) Last updated: 2022-08-14
Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General
Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plancon
Public-key cryptography

We present a much-improved practical protocol, based on the hardness of Module-SIS and Module-LWE problems, for proving knowledge of a short vector $s$ satisfying $As=t\bmod q$. The currently most-efficient technique for constructing such a proof works by showing that the $\ell_\infty$ norm of $s$ is small. It creates a commitment to a polynomial vector $m$ whose CRT coefficients are the coefficients of $s$ and then shows that (1) $A\cdot \mathsf{CRT}(m)=t\bmod\,q$ and (2) in the case that...

2022/271 (PDF) Last updated: 2022-03-02
Approximate Divisor Multiples -- Factoring with Only a Third of the Secret CRT-Exponents
Alexander May, Julian Nowakowski, Santanu Sarkar
Public-key cryptography

We address Partial Key Exposure attacks on CRT-RSA on secret exponents $d_p, d_q$ with small public exponent $e$. For constant $e$ it is known that the knowledge of half of the bits of one of $d_p, d_q$ suffices to factor the RSA modulus $N$ by Coppersmith's famous {\em factoring with a hint} result. We extend this setting to non-constant $e$. Somewhat surprisingly, our attack shows that RSA with $e$ of size $N^{\frac 1 {12}}$ is most vulnerable to Partial Key Exposure, since in this case...

2022/127 (PDF) Last updated: 2022-02-09
CCA secure ElGamal encryption over an integer group where ICDH assumption holds
Gyu-Chol. Kim, Jae-Yong. Sin, Yong-Bok. Jong
Public-key cryptography

In order to prove the ElGamal CCA (Chosen Ciphertext Attack) security in the random oracle model, it is necessary to use the group (i.e., ICDH group) where ICDH assumption holds. Until now, only bilinear group where ICDH assumption is equivalent to CDH assumption has been known as the ICDH group. In this paper, we introduce another ICDH group in which ICDH assumption holds under the RSA assumption. Based on this group, we propose the CCA secure ElGamal encryption. And we describe the...

2021/1444 (PDF) Last updated: 2022-11-18
Streamlined NTRU Prime on FPGA
Bo-Yuan Peng, Adrian Marotzke, Ming-Han Tsai, Bo-Yin Yang, Ho-Lin Chen
Implementation

We present a novel full hardware implementation of Streamlined NTRU Prime, with two variants: A high-speed, high-area implementation, and a slower, low-area implementation. We introduce several new techniques that improve performance, including a batch inversion for key generation, a high-speed schoolbook polynomial multiplier, an NTT polynomial multiplier combined with a CRT map, a new DSP-free modular reduction method, a high-speed radix sorting module, and new en- and decoders. With the...

2021/972 (PDF) Last updated: 2021-11-15
Partial Key Exposure Attack on Short Secret Exponent CRT-RSA
Alexander May, Julian Nowakowski, Santanu Sarkar
Public-key cryptography

Let $(N,e)$ be an RSA public key, where $N=pq$ is the product of equal bitsize primes $p,q$. Let $d_p, d_q$ be the corresponding secret CRT-RSA exponents. Using a Coppersmith-type attack, Takayasu, Lu and Peng (TLP) recently showed that one obtains the factorization of $N$ in polynomial time, provided that $d_p, d_q \leq N^{0.122}$. Building on the TLP attack, we show the first Partial Key Exposure attack on short secret exponent CRT-RSA. Namely, let $N^{0.122} \leq d_p, d_q \leq...

2021/410 (PDF) Last updated: 2021-03-27
Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM
Shlomi Dolev, Stav Doolman
Cryptographic protocols

A Statistical Information Theoretic Secure (SITS) system utilizing the Chinese Remainder Theorem (CRT), coupled with Fully Homomorphic Encryption (FHE) for Distributed Communication-less Secure Multiparty Computation (DCLSMPC) of any Distributed Unknown Finite State Machine (DUFSM) is presented. Namely, secret shares of the input(s) and output(s) are passed to/from the computing parties, while there is no communication between them throughout the computation. We propose a novel approach of...

2021/112 Last updated: 2021-02-06
Full-Resilient Memory-Optimum Multi-Party Non-Interactive Key Exchange
Majid Salimi, Hamid Mala, Honorio Martin, Pedro Peris-Lopez
Public-key cryptography

Multi-Party Non-Interactive Key Exchange (MP-NIKE) is a fundamental cryptographic primitive in which users register into a key generation centre and receive a public/private key pair each. After that, any subset of these users can compute a shared key without any interaction. Nowadays, IoT devices suffer from a high number and large size of messages exchanged in the Key Management Protocol (KMP). To overcome this, an MP-NIKE scheme can eliminate the airtime and latency of messages...

2021/101 (PDF) Last updated: 2021-02-25
Combined Fault and DPA Protection for Lattice-Based Cryptography
Daniel Heinz, Thomas Pöppelmann
Public-key cryptography

The progress on constructing quantum computers and the ongoing standardization of post-quantum cryptography (PQC) have led to the development and refinement of promising new digital signature schemes and key encapsulation mechanisms (KEM). Especially lattice-based schemes have gained some popularity in the research community, presumably due to acceptable key, ciphertext, and signature sizes as well as good performance results and cryptographic strength. However, in some practical...

2020/1507 (PDF) Last updated: 2021-03-30
Improvements to RSA key generation and CRT on embedded devices
Mike Hamburg, Mike Tunstall, Qinglai Xiao
Public-key cryptography

RSA key generation requires devices to generate large prime numbers. The naïve approach is to generate candidates at random, and then test each one for (probable) primality. However, it is faster to use a sieve method, where the candidates are chosen so as not to be divisible by a list of small prime numbers $\{p_i\}$. Sieve methods can be somewhat complex and time-consuming, at least by the standards of embedded and hardware implementations, and they can be tricky to defend against...

2020/1397 (PDF) Last updated: 2021-01-14
NTT Multiplication for NTT-unfriendly Rings
Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor Seiler, Cheng-Jhih Shih, Bo-Yin Yang
Implementation

In this paper, we show how multiplication for polynomial rings used in the NIST PQC finalists Saber and NTRU can be efficiently implemented using the Number-theoretic transform (NTT). We obtain superior performance compared to the previous state of the art implementations using Toom–Cook multiplication on both NIST’s primary software optimization targets AVX2 and Cortex-M4. Interestingly, these two platforms require different approaches: On the Cortex-M4, we use 32-bit NTT-based polynomial...

2020/946 (PDF) Last updated: 2020-08-04
Timing attacks and local timing attacks against Barrett’s modular multiplication algorithm
Johannes Mittmann, Werner Schindler
Implementation

Montgomery’s and Barrett’s modular multiplication algorithms are widely used in modular exponentiation algorithms, e.g. to compute RSA or ECC operations. While Montgomery’s multiplication algorithm has been studied extensively in the literature and many side-channel attacks have been detected, to our best knowledge no thorough analysis exists for Barrett’s multiplication algorithm. This article closes this gap. For both Montgomery’s and Barrett’s multiplication algorithm, differences of the...

2020/861 (PDF) Last updated: 2020-07-12
Faster Homomorphic Encryption over GPGPUs via hierarchical DGT
Pedro Geraldo M. R. Alves, Jheyne N. Ortiz, Diego F. Aranha
Implementation

Privacy guarantees are still insufficient for outsourced data processing in the cloud. While employing encryption is feasible for data at rest or in transit, it is not for computation without remarkable performance slowdown. Thus, handling data in plaintext during processing is still required, which creates vulnerabilities that can be exploited by malicious entities. Homomorphic encryption (HE) schemes are natural candidates for computation in the cloud since they enable processing of...

2020/696 (PDF) Last updated: 2020-06-10
An Efficient CRT-based Bit-parallel Multiplier for Special Pentanomials
Yin Li, Yu Zhang
Implementation

The Chinese remainder theorem (CRT)-based multiplier is a new type of hybrid bit-parallel multiplier, which can achieve nearly the same time complexity compared with the fastest multiplier known to date with reduced space complexity. However, the current CRT-based multipliers are only applicable to trinomials. In this paper, we propose an efficient CRT-based bit-parallel multiplier for a special type of pentanomial $x^m+x^{m-k}+x^{m-2k}+x^{m-3k}+1, 5k<m\leq 7k$. Through transforming the...

2020/314 (PDF) Last updated: 2020-03-15
Proposal of Multivariate Public Key Cryptosystem Based on Modulus of Numerous Prime Numbers and CRT with Security of IND-CPA
Shigeo Tsujii, Ryo Fujita, Masahito Gotaishi
Public-key cryptography

We have proposed before a multivariate public key cryptosystem (MPKC) that does not rely on the difficulty of prime factorization, and whose modulus is the product of many small prime numbers. In this system, the prime factorization by the attackers is self-trivial, and the structure of the secret key is based on CRT (Chinese Remainder Theorem). In this paper we propose MPKC with security of IND-CPA by adding random numbers to central transformation vectors in the system proposed before.

2020/055 (PDF) Last updated: 2020-03-20
When one vulnerable primitive turns viral: Novel single-trace attacks on ECDSA and RSA
Alejandro Cabrera Aldaya, Billy Bob Brumley
Implementation

Microarchitecture based side-channel attacks are common threats nowadays. Intel SGX technology provides a strong isolation from an adversarial OS, however, does not guarantee protection against side-channel attacks. In this paper, we analyze the security of the mbedTLS binary GCD algorithm, an implementation that offers interesting challenges when compared for example with OpenSSL, due to the usage of very tight loops in the former. Using practical experiments we demonstrate the mbedTLS...

2019/915 (PDF) Last updated: 2019-08-13
Unique Rabin-Williams Signature Scheme Decryption
Lynn Margaret Batten, Hugh Cowie Williams
Public-key cryptography

Abstract. The extremely efficient Rabin-Williams signature scheme relies on decryption of a quadratic equation in order to retrieve the original message. Customarily, square roots are found using the Chinese Remainder Theorem. This can be done in polynomial time, but generally produces four options for the correct message which must be analyzed to determine the correct one. This paper resolves the problem of efficient deterministic decryption to the correct message modulo $p^2q$ by...

2019/445 (PDF) Last updated: 2019-05-08
Lattice-based Zero-Knowledge Proofs: New Techniques for Shorter and Faster Constructions and Applications
Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, Dongxi Liu
Cryptographic protocols

We devise new techniques for design and analysis of efficient lattice-based zero-knowledge proofs (ZKP). First, we introduce one-shot proof techniques for non-linear polynomial relations of degree $k\ge 2$, where the protocol achieves a negligible soundness error in a single execution, and thus performs significantly better in both computation and communication compared to prior protocols requiring multiple repetitions. Such proofs with degree $k\ge 2$ have been crucial ingredients for...

2019/195 (PDF) Last updated: 2019-02-27
Algorithms for CRT-variant of Approximate Greatest Common Divisor Problem
Jung Hee Cheon, Wonhee Cho, Minki Hhan, Minsik Kang, Jiseung Kim, Changmin Lee

The approximate greatest common divisor problem (ACD) and its variants have been used to construct many cryptographic primitives. In particular, variants of the ACD problem based on Chinese remainder theorem (CRT) are exploited in the constructions of a batch fully homomorphic encryption to encrypt multiple messages in one ciphertext. Despite the utility of the CRT-variant scheme, the algorithms to solve its security foundation have not been studied well compared to the original ACD based...

2018/1054 (PDF) Last updated: 2019-06-25
Efficient Multi-key FHE with short extended ciphertexts and less public parameters
Tanping Zhou, Ningbo Li, Xiaoyuan Yang, Yiliang Han, Wenchao Liu
Public-key cryptography

Multi-Key Full Homomorphic Encryption (MKFHE) can perform arbitrary operations on encrypted data under different public keys (users), and the final ciphertext can be jointly decrypted by all involved users. Therefore, MKFHE has natural advantages and application value in security multi-party computation (MPC). The MKFHE scheme based on Brakerski-Gentry-Vaikuntanathan (BGV) inherits the advantages of BGV FHE scheme in aspects of encrypting a ring element, the ciphertext/plaintext ratio, and...

2018/933 (PDF) Last updated: 2018-10-02
Asymptotically Ideal CRT-based Secret Sharing Schemes for Multilevel and Compartmented Access Structures
Ferucio Laurentiu Tiplea, Constantin Catalin Dragan
Cryptographic protocols

Multilevel and compartmented access structures are two important classes of access structures where participants are grouped into levels/compartments with different degrees of trust and privileges. The construction of secret sharing schemes for such access structures has been in the attention of researchers for a long time. Two main approaches have been taken so far: one of them is based on polynomial interpolation and the other one is based on the Chinese Remainder Theorem (CRT). In this...

2018/930 (PDF) Last updated: 2018-10-02
A study on the fast ElGamal encryption
Kim Gyu-Chol, Li Su-Chol
Public-key cryptography

ElGamal cryptosystem is typically developed in the multiplicative group $\mathbb{Z}_p^*$ ($p$ is a prime number), but it can be applied to the other groups in which discrete logarithm problem should be computationally infeasible. Practically, instead of ElGamal in $\mathbb Z_p^*$, various variants such as ECElGamal (ElGamal in elliptic curve group), CRTElGamal (ElGamal in subgroup of $\mathbb Z_n^*$ where $n=pq$ and $p,q,(p-1)/2,(q-1)/2$ are primes) have already been used for the semantic...

2018/837 (PDF) Last updated: 2018-09-06
Constructing Ideal Secret Sharing Schemes based on Chinese Remainder Theorem
Yu Ning, Fuyou Miao, Wenchao Huang, Keju Meng, Yan Xiong, Xingfu Wang

Since $(t,n)$-threshold secret sharing (SS) was initially proposed by Shamir and Blakley separately in 1979, it has been widely used in many aspects. Later on, Asmuth and Bloom presented a $(t,n)$-threshold SS scheme based on the Chinese Remainder Theorem(CRT) for integers in 1983. However, compared with the most popular Shamir's $(t,n)$-threshold SS scheme, existing CRT based schemes have a lower information rate, moreover, they are harder to construct. To overcome these shortcomings of the...

2018/644 (PDF) Last updated: 2018-07-06
Hide The Modulus: A Secure Non-Interactive Fully Verifiable Delegation Scheme for Modular Exponentiations via CRT
Osmanbey Uzunkol, Jothi Rangasamy, Lakshmi Kuppusamy

Security protocols using public-key cryptography often requires large number of costly modular exponentiations (MEs). With the proliferation of resource-constrained (mobile) devices and advancements in cloud computing, delegation of such expensive computations to powerful server providers has gained lots of attention. In this paper, we address the problem of verifiably secure delegation of MEs using two servers, where at most one of which is assumed to be malicious (the OMTUP-model). We...

2018/494 (PDF) Last updated: 2019-09-04
Order-LWE and the Hardness of Ring-LWE with Entropic Secrets
Madalina Bolboceanu, Zvika Brakerski, Renen Perlman, Devika Sharma

We propose a generalization of the celebrated Ring Learning with Errors (RLWE) problem (Lyubashevsky, Peikert and Regev, Eurocrypt 2010, Eurocrypt 2013), wherein the ambient ring is not the ring of integers of a number field, but rather an *order* (a full rank subring). We show that our Order-LWE problem enjoys worst-case hardness with respect to short-vector problems in invertible-ideal lattices *of the order*. The definition allows us to provide a new analysis for the hardness of the...

2018/117 (PDF) Last updated: 2019-03-06
An Improved RNS Variant of the BFV Homomorphic Encryption Scheme
Shai Halevi, Yuriy Polyakov, Victor Shoup
Implementation

We present an optimized implementation of the Fan-Vercauteren variant of Brakerski's scale-invariant homomorphic encryption scheme. Our algorithmic improvements focus on optimizing decryption and homomorphic multiplication in the Residue Number System (RNS), using the Chinese Remainder Theorem (CRT) to represent and manipulate the large coefficients in the ciphertext polynomials. In particular, we propose efficient procedures for scaling and CRT basis extension that do not require...

2017/1013 (PDF) Last updated: 2018-02-06
Homomorphic SIM$^2$D Operations: Single Instruction Much More Data
Wouter Castryck, Ilia Iliashenko, Frederik Vercauteren
Public-key cryptography

In 2014, Smart and Vercauteren introduced a packing technique for homomorphic encryption schemes by decomposing the plaintext space using the Chinese Remainder Theorem. This technique allows to encrypt multiple data values simultaneously into one ciphertext and execute Single Instruction Multiple Data operations homomorphically. In this paper we improve and generalize their results by introducing a flexible Laurent polynomial encoding technique and by using a more fine-grained CRT...

2017/923 (PDF) Last updated: 2017-09-24
Batched Multi-hop Multi-key FHE from ring-LWE with Compact Ciphertext Extension
Long Chen, Zhenfeng Zhang, Xueqing Wang

Traditional fully homomorphic encryption (FHE) schemes support computation on data encrypted under a single key. In STOC 2012, López-Alt et al. introduced the notion of multi-key FHE (MKFHE), which allows homomorphic computation on ciphertexts encrypted under different keys. In this work, we focus on MKFHE constructions from standard assumptions and propose a new construction of ring-LWE-based multi-hop MKFHE scheme. Our work is based on Brakerski-Gentry-Vaikuntanathan (BGV) FHE scheme...

2017/627 (PDF) Last updated: 2017-06-28
Sliding right into disaster: Left-to-right sliding windows leak
Daniel J. Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruinderink, Nadia Heninger, Tanja Lange, Christine van Vredendaal, Yuval Yarom

It is well known that constant-time implementations of modular exponentiation cannot use sliding windows. However, software libraries such as Libgcrypt, used by GnuPG, continue to use sliding windows. It is widely believed that, even if the complete pattern of squarings and multiplications is observed through a side-channel attack, the number of exponent bits leaked is not sufficient to carry out a full key-recovery attack against RSA. Specifically, 4-bit sliding windows leak only 40\% of...

2017/246 (PDF) Last updated: 2017-03-20
An Analysis of FV Parameters Impact Towards its Hardware Acceleration
Joël Cathébras, Alexandre Carbon, Renaud Sirdey, Nicolas Ventroux

The development of cloud computing services is restrained by privacy concerns. Centralized medical services for instance, require a guarantee of confidentiality when using outsourced computation platforms. Fully Homomorphic Encryption is an intuitive solution to address such issue, but until 2009, existing schemes were only able to evaluate a reduced number of operations (Partially Homomorphic Encryption). In 2009, C. Gentry proposed a blueprint to construct FHE schemes from SHE...

2017/092 (PDF) Last updated: 2017-07-26
Small CRT-Exponent RSA Revisited
Atsushi Takayasu, Yao Lu, Liqiang Peng

Since May (Crypto'02) revealed the vulnerability of the small CRT-exponent RSA using Coppersmith's lattice-based method, several papers have studied the problem and two major improvements have been made. (1) Bleichenbacher and May (PKC'06) proposed an attack for small $d_q$ when the prime factor $p$ is significantly smaller than the other prime factor $q$; the attack works for $p<N^{0.468}$. (2) Jochemsz and May (Crypto'07) proposed an attack for small $d_p$ and $d_q$ when the prime factors...

2016/913 (PDF) Last updated: 2017-04-18
Small Field Attack, and Revisiting RLWE-Based Authenticated Key Exchange from Eurocrypt'15
Boru Gong, Yunlei Zhao

Authenticated key-exchange (AKE) plays a fundamental role in modern cryptography. Up to now, the HMQV protocol family is among the most efficient provably secure AKE protocols, which has been widely standardized and in use. Given recent advances in quantum computing, it would be highly desirable to develop lattice-based HMQV-analogue protocols for the possible upcoming post-quantum era. Towards this goal, an important step is recently made by Zhang et al. at Eurocrypt'15. Similar to HMQV,...

2016/725 (PDF) Last updated: 2016-07-31
Tile-Based Modular Architecture for Accelerating Homomorphic Function Evaluation on FPGA
Mustafa Khairallah, Maged Ghoneima

In this paper, a new architecture for accelerating homomorphic function evaluation on FPGA is proposed. A parallel cached NTT algorithm with an overall time complexity O(sqrt(N)log(sqrt(N)) is presented. The architecture has been implemented on Xilinx Virtex 7 XC7V1140T FPGA. achieving a 60% utilization ratio. The implementation performs 32-bit 2^(16)-point NTT algorithm in 23.8 us, achieving speed-up of 2x over the state of the art architectures. The architecture has been evaluated by...

2016/597 (PDF) Last updated: 2017-01-10
Correlated Extra-Reductions Defeat Blinded Regular Exponentiation - Extended Version
Margaux Dugardin, Sylvain Guilley, Jean-Luc Danger, Zakaria Najm, Olivier Rioul

Walter & Thomson (CT-RSA '01) and Schindler (PKC '02) have shown that extra-reductions allow to break RSA-CRT even with message blinding. Indeed, the extra-reduction probability depends on the type of operation: square, multiply, or multiply with a constant. Regular exponentiation schemes can be regarded as protections, as the operation sequence does not depend on the secret. In this article, we show that there exists a strong negative correlation between extra-reductions of two...

2016/238 (PDF) Last updated: 2016-03-03
Algorithmic Countermeasures Against Fault Attacks and Power Analysis for RSA-CRT
Ágnes Kiss, Juliane Krämer, Pablo Rauzy, Jean-Pierre Seifert
Public-key cryptography

In this work, we analyze all existing RSA-CRT countermeasures against the Bellcore attack that use binary self-secure exponentiation algorithms. We test their security against a powerful adversary by simulating fault injections in a fault model that includes random, zeroing, and skipping faults at all possible fault locations. We find that most of the countermeasures are vulnerable and do not provide sufficient security against all attacks in this fault model. After investigating how...

2015/818 (PDF) Last updated: 2015-08-18
cuHE: A Homomorphic Encryption Accelerator Library
Wei Dai, Berk Sunar
Implementation

We introduce a CUDA GPU library to accelerate evaluations with homomorphic schemes defined over polynomial rings enabled with a number of optimizations including algebraic techniques for efficient evaluation, memory minimization techniques, memory and thread scheduling and low level CUDA hand-tuned assembly optimizations to take full advantage of the mass parallelism and high memory bandwidth GPUs offer. The arithmetic functions constructed to handle very large polynomial operands using...

2015/498 (PDF) Last updated: 2015-06-05
Low Space Complexity CRT-based Bit-Parallel GF(2^n) Polynomial Basis Multipliers for Irreducible Trinomials
Jiajun Zhang, Haining Fan

By selecting the largest possible value of k&#8712;(n/2,2n/3], we further reduce the AND and XOR gate complexities of the CRT-based hybrid parallel GF(2^n) polynomial basis multipliers for the irreducible trinomial f = u^n + u^k + 1 over GF(2): they are always less than those of the current fastest parallel multipliers – quadratic multipliers, i.e., n^2 AND gates and n^2-1 XOR gates. Our experimental results show that among the 539 values of n&#8712;[5,999] such that f is irreducible for...

2015/462 (PDF) Last updated: 2015-05-15
Accelerating SWHE based PIRs using GPUs
Wei Dai, Yarkın Doröz, Berk Sunar
Implementation

In this work we focus on tailoring and optimizing the computational Private Information Retrieval (cPIR) scheme proposed in WAHC 2014 for efficient execution on graphics processing units (GPUs). Exploiting the mass parallelism in GPUs is a commonly used approach in speeding up cPIRs. Our goal is to eliminate the efficiency bottleneck of the Doröz et al construction which would allow us to take advantage of its excellent bandwidth performance. To this end, we develop custom code to support...

2015/337 (PDF) Last updated: 2015-09-11
Modular Hardware Architecture for Somewhat Homomorphic Function Evaluation
Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil Dimitrov, Ingrid Verbauwhede
Implementation

We present a hardware architecture for all building blocks required in polynomial ring based fully homomorphic schemes and use it to instantiate the somewhat homomorphic encryption scheme YASHE. Our implementation is the first FPGA implementation that is designed for evaluating functions on homomorphically encrypted data (up to a certain multiplicative depth) and we illustrate this capability by evaluating the SIMON-64/128 block cipher in the encrypted domain. Our implementation provides a...

2014/923 Last updated: 2015-02-06
New Cryptosystem Using The CRT And The Jordan Normal Form
Hemlata Nagesh, Birendra Kumar Sharma
Public-key cryptography

In this paper we introduce a method for improving the implementation of GGH cryptosystem using the Chinese Remainder Theorem (CRT) and jordan normal form. In this paper we propose a method for improving the speed of Babai’s Round- Off CVP approximation algorithm [1] in lattices using the Chinese Remainder Theorem (CRT) then formulate a new lattice-based cryptosystem usng jordan normal form instead of hermite normal form would improve substantially the efficiency of the lattice based...

2014/906 (PDF) Last updated: 2017-09-15
Cryptanalysis on the Multilinear Map over the Integers and its Related Problems
Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, Damien Stehle

The CRT-ACD problem is to find the primes p_1,...,p_n given polynomially many instances of CRT_{(p_1,...,p_n)}(r_1,...,r_n) for small integers r_1,...,r_n. The CRT-ACD problem is regarded as a hard problem, but its hardness is not proven yet. In this paper, we analyze the CRT-ACD problem when given one more input CRT_{(p_1,...,p_n)}(x_0/p_1,...,x_0/p_n) for x_0=\prod\limits_{i=1}^n p_i and propose a polynomial-time algorithm for this problem by using products of the instances and auxiliary...

2014/869 (PDF) Last updated: 2015-08-01
Exclusive Exponent Blinding May Not Suffice to Prevent Timing Attacks on RSA
Werner Schindler
Implementation

The references [9,3,1] treat timing attacks on RSA with CRT and Montgomery's multiplication algorithm in unprotected implementations. It has been widely believed that exponent blinding would prevent any timing attack on RSA. At cost of significantly more timing measurements this paper extends the before-mentioned attacks to RSA with CRT when Montgomery's multiplication algorithm and exponent blinding are applied. Simulation experiments are conducted, which confirm the theoretical results....

2014/790 (PDF) Last updated: 2014-10-10
Fault Attack revealing Secret Keys of Exponentiation Algorithms from Branch Prediction Misses
Sarani Bhattacharya, Debdeep Mukhopadhyay
Public-key cryptography

Performance monitors are provided in modern day computers for observing various features of the underlying microarchitectures. However the combination of underlying micro-architectural features and performance counters lead to side-channels which can be exploited for attacking cipher implementations. In this paper, to the best of our knowledge we study for the first time, the combination of branch-predictor algorithms and performance counters to demonstrate a fault attack on the popular...

2014/559 (PDF) Last updated: 2015-01-20
Countermeasures Against High-Order Fault-Injection Attacks on CRT-RSA
Pablo Rauzy, Sylvain Guilley
Implementation

In this paper we study the existing CRT-RSA countermeasures against fault-injection attacks. In an attempt to classify them we get to achieve deep understanding of how they work. We show that the many countermeasures that we study (and their variations) actually share a number of common features, but optimize them in different ways. We also show that there is no conceptual distinction between test-based and infective countermeasures and how either one can be transformed into the...

2014/450 Last updated: 2014-08-10
Optimized Implementation of General Secret Sharing Scheme
Lein Harn, Ching-Fang Hsu

Secret sharing (SS) is one of the most important cryptographic primitives used for data outsourcing. The (t, n) SS was introduced by Shamir and Blakley separately in 1979. The secret sharing policy of the (t, n) threshold SS is far too simple for many applications because it assumes that every shareholder has equal privilege to the secret or every share-holder is equally trusted. Ito et al. introduced the concept of a general secret sharing scheme (GSS). In a GSS, a secret is divided among...

2014/343 (PDF) Last updated: 2015-09-07
Solving Linear Equations Modulo Unknown Divisors: Revisited
Yao Lu, Rui Zhang, Liqiang Peng, Dongdai Lin

We revisit the problem of finding small solutions to a collection of linear equations modulo an unknown divisor $p$ for a known composite integer $N$. In CaLC 2001, Howgrave-Graham introduced an efficient algorithm for solving univariate linear equations; since then, two forms of multivariate generalizations have been considered in the context of cryptanalysis: modular multivariate linear equations by Herrmann and May (Asiacrypt'08) and simultaneous modular univariate linear equations by...

2014/252 (PDF) Last updated: 2014-04-20
Making RSA-PSS Provably Secure Against Non-Random Faults
Gilles Barthe, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Mehdi Tibouchi, Jean-Christophe Zapalowicz
Public-key cryptography

RSA–CRT is the most widely used implementation for RSA signatures. However, deterministic and many probabilistic RSA signatures based on CRT are vulnerable to fault attacks. Nevertheless, Coron and Mandal (Asiacrypt 2009) show that the randomized PSS padding protects RSA signatures against random faults. In contrast, Fouque et al. (CHES 2012) show that PSS padding does not protect against certain non-random faults that can be injected in widely used implementations based on the Montgomery...

2013/810 (PDF) Last updated: 2014-05-22
Formal Analysis of CRT-RSA Vigilant's Countermeasure Against the BellCoRe Attack
Pablo Rauzy, Sylvain Guilley
Implementation

In our paper at PROOFS 2013, we formally studied a few known countermeasures to protect CRT-RSA against the BellCoRe fault injection attack. However, we left Vigilant's countermeasure and its alleged repaired version by Coron et al. as future work, because the arithmetical framework of our tool was not sufficiently powerful. In this paper we bridge this gap and then use the same methodology to formally study both versions of the countermeasure. We obtain surprising results, which we believe...

2013/506 (PDF) Last updated: 2014-01-30
A Formal Proof of Countermeasures Against Fault Injection Attacks on CRT-RSA
Pablo Rauzy, Sylvain Guilley

In this article, we describe a methodology that aims at either breaking or proving the security of CRT-RSA implementations against fault injection attacks. In the specific case-study of the BellCoRe attack, our work bridges a gap between formal proofs and implementation-level attacks. We apply our results to three implementations of CRT-RSA, namely the unprotected one, that of Shamir, and that of Aumüller et al. Our findings are that many attacks are possible on both the unprotected and the...

2013/075 (PDF) Last updated: 2013-09-30
Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme
Joppe W. Bos, Kristin Lauter, Jake Loftus, Michael Naehrig
Public-key cryptography

In 1996, Hoffstein, Pipher and Silverman introduced an efficient lattice based encryption scheme dubbed NTRUEnc. Unfortunately, this scheme lacks a proof of security. However, in 2011, Stehle and Steinfeld showed how to modify NTRUEnc to reduce security to standard problems in ideal lattices. In 2012, Lopez-Alt, Tromer and Vaikuntanathan proposed a fully homomorphic scheme based on this modified system. However, to allow homomorphic operations and prove security, a non-standard assumption...

2013/057 (PDF) Last updated: 2013-02-06
CRT-based Fully Homomorphic Encryption over the Integers
Jinsu Kim, Moon Sung Lee, Aaram Yun, Jung Hee Cheon
Public-key cryptography

In 1978, Rivest, Adleman and Dertouzos introduced the basic concept of privacy homomorphism that allows computation on encrypted data without decryption. It was elegant work that precedes the recent development of fully homomorphic encryption schemes although there were found some security flaws, e.g., ring homomorphic schemes are broken by the known-plaintext attacks. In this paper, we revisit one of their proposals, in particular the third scheme which is based on the Chinese Remainder...

2012/660 Last updated: 2017-08-18
Design of Secure Image Transmission In MANET using Number Theory Based Image Compression and uasigroup Encryption (NTICQE) Algorithm
Munivel E, Rajeswari Mukesh

Image compression and image encryption are pivotal to proper storage and transmission of images over MANET. Simultaneous image compression and encryption aims at achieving enhanced bandwidth utilization and security at the same time. The Number Theory based Image Compression and Quasigroup Encryption (NTICQE) algorithm employs number theoretic paradigm - Chinese Remainder Theorem and Quasigroup Encryption, to solve congruencies and hence realize the twin ideals of compression and...

2012/565 (PDF) Last updated: 2012-10-07
Packed Ciphertexts in LWE-based Homomorphic Encryption
Zvika Brakerski, Craig Gentry, Shai Halevi
Public-key cryptography

In this short note we observe that the Peikert-Vaikuntanathan-Waters (PVW) method of packing many plaintext elements in a single Regev-type ciphertext, can be used for performing SIMD homomorphic operations on packed ciphertext. This provides an alternative to the Smart-Vercauteren (SV) ciphertext-packing technique that relies on polynomial-CRT. While the SV technique is only applicable to schemes that rely on ring-LWE (or other hardness assumptions in ideal lattices), the PVW method can be...

2012/553 (PDF) Last updated: 2012-09-27
Bellcore attack in practice
Andrey Sidorenko, Joachim van den Berg, Remko Foekema, Michiel Grashuis, Jaap de Vos
Public-key cryptography

In this paper we analyze practical aspects of the differential fault attack on RSA published by Boneh, Demillo and Lipton from Bellcore. We focus on the CRT variant, which requires only one faulty signature to be entirely broken provided that no DFA countermeasures are in use. Usually the easiest approach for the attacker is to introduce a fault in one of the two RSA-CRT exponentiations. These are time-consuming and often clearly visible in the power profiles. However, protection of the...

2012/443 (PDF) Last updated: 2013-05-07
Improved CRT Algorithm for Class Polynomials in Genus 2
Kristin Lauter, Damien Robert

We present a generalization to genus~2 of the probabilistic algorithm of Sutherland for computing Hilbert class polynomials. The improvement over the Bröker-Gruenewald-Lauter algorithm for the genus~2 case is that we do not need to find a curve in the isogeny class whose endomorphism ring is the maximal order; rather, we present a probabilistic algorithm for ``going up'' to a maximal curve (a curve with maximal endomorphism ring), once we find any curve in the right isogeny class. Then we...

2012/172 (PDF) Last updated: 2012-04-11
Attacking RSA-CRT Signatures with Faults on Montgomery Multiplication
Pierre-Alain Fouque, Nicolas Guillermin, Delphine Leresteux, Mehdi Tibouchi, Jean-Christophe Zapalowicz
Public-key cryptography

In this paper, we present several efficient fault attacks against implementations of RSA-CRT signatures that use modular exponentiation algorithms based on Montgomery multiplication. They apply to any padding function, including randomized paddings, and as such are the first fault attacks effective against RSA-PSS. The new attacks work provided that a small register can be forced to either zero, or a constant value, or a value with zero high-order bits. We show that these models are quite...

2012/106 (PDF) Last updated: 2012-02-29
More on Correcting Errors in RSA Private Keys: Breaking CRT-RSA with Low Weight Decryption Exponents
Santanu Sarkar, Subhamoy Maitra
Public-key cryptography

Several schemes have been proposed towards the fast encryption and decryption in RSA and its variants. One popular idea is to use integers having low Hamming weight in the preparation of the decryption exponents. This is to reduce the multiplication effort in the square and multiply method in the exponentiation routine, both in encryption and decryption. In this paper we show that such schemes are insecure in CRT-RSA when the encryption exponent is small (e.g., $e = 2^{16}+1$). In...

2011/388 (PDF) Last updated: 2011-07-28
Modulus Fault Attacks Against RSA-CRT Signatures
Eric Brier, David Naccache, Phong Q. Nguyen, Mehdi Tibouchi
Implementation

RSA-CRT fault attacks have been an active research area since their discovery by Boneh, DeMillo and Lipton in 1997. We present alternative key-recovery attacks on RSA-CRT signatures: instead of targeting one of the sub-exponentiations in RSA-CRT, we inject faults into the public modulus before CRT interpolation, which makes a number of countermeasures against Boneh et al.'s attack ineffective. Our attacks are based on orthogonal lattice techniques and are very efficient in practice:...

2011/354 (PDF) Last updated: 2011-07-04
A coprocessor for secure and high speed modular arithmetic
Nicolas Guillermin
Implementation

We present a coprocessor design for fast arithmetic over large numbers of cryptographic sizes. Our design provides a efficient way to prevent side channel analysis as well as fault analysis targeting modular arithmetic with large prime or composite numbers. These two countermeasure are then suitable both for Elliptic Curve Cryptography over prime fields or RSA using CRT or not. To do so, we use the residue number system (RNS) in an efficient manner to protect from leakage and fault, while...

2010/603 (PDF) Last updated: 2010-11-25
Cryptanalysis of Dual CRT-RSA
Santanu Sarkar, Subhamoy Maitra
Public-key cryptography

Several schemes under the framework of Dual RSA have been proposed by Sun et al (IEEE-IT, August 2007). We here concentrate on the Dual CRT-RSA scheme and present certain range of parameters for which this is insecure. As a corollary of our work, we prove that the Dual Generalized Rebalanced-RSA (Scheme III of Sun et al) can be efficiently broken for a significant region where the scheme has been claimed to be secure.

2010/433 (PDF) (PS) Last updated: 2010-10-10
The PASSERINE Public Key Encryption and Authentication Mechanism
Markku-Juhani O. Saarinen
Public-key cryptography

PASSERINE is a lightweight public key encryption mechanism which is based on a hybrid, randomized variant of the Rabin public key encryption scheme. Its design is targeted for extremely low-resource applications such as wireless sensor networks, RFID tags, embedded systems, and smart cards. As is the case with the Rabin scheme, the security of PASSERINE can be shown to be equivalent to factoring the public modulus. On many low-resource implementation platforms PASSERINE offers smaller...

2010/146 (PDF) Last updated: 2010-04-07
Some Applications of Lattice Based Root Finding Techniques
Santanu Sarkar, Subhamoy Maitra
Public-key cryptography

In this paper we present some problems and their solutions exploiting lattice based root finding techniques. In CaLC 2001, Howgrave-Graham proposed a method to find the Greatest Common Divisor (GCD) of two large integers when one of the integers is exactly known and the other one is known approximately. In this paper, we present three applications of the technique. The first one is to show deterministic polynomial time equivalence between factoring $N$ ($N = pq$, where $p > q$ or $p, q$ are...

2010/096 (PDF) Last updated: 2010-03-01
Secret Sharing Extensions based on the Chinese Remainder Theorem
Kamer Kaya, Ali Aydın Selçuk
Cryptographic protocols

In this paper, we investigate how to achieve verifiable secret sharing (VSS) schemes by using the Chinese Remainder Theorem (CRT). We first show that two schemes proposed earlier are not secure from an attack where the dealer is able to distribute inconsistent shares to the users. Then we propose a new VSS scheme based on the CRT and prove its security. Using the proposed VSS scheme, we develop joint random secret sharing~(JRSS) and proactive SSS protocols, which, to the best of our...

2010/054 (PDF) Last updated: 2010-03-05
An Improved Timing Attack with Error Detection on RSA-CRT
Cai-Sen CHEN, Tao Wang, Jun-Jian Tian
Implementation

Several types of timing attacks have been published, but they are either in theory or hard to be taken into practice. In order to improve the feasibility of attack, this paper proposes an advance timing attack scheme on RSA-CRT with T-test statistical tool. Similar timing attacks have been presented, such as BB-Attack and Shindler’s attack, however none of them applied statistical tool in their methods with such efficiency, and showed the complete recovery in practice by attacking on...

2010/031 (PDF) Last updated: 2010-01-22
Class Invariants by the CRT Method
Andreas Enge, Andrew V. Sutherland
Public-key cryptography

We adapt the CRT approach to computing Hilbert class polynomials to handle a wide range of class invariants. For suitable discriminants D, this improves its performance by a large constant factor, more than 200 in the most favourable circumstances. This has enabled record-breaking constructions of elliptic curves via the CM method, including examples with |D| > 10^{15}.

2009/426 (PDF) Last updated: 2009-09-04
Cheating Detection and Cheater Identification in CRT-based Secret Sharing Schemes
Daniel Pasaila, Vlad Alexa, Sorin Iftene
Cryptographic protocols

In this paper we analyze the cheating detection and cheater identification problems for the secret sharing schemes based on the Chinese remainder theorem (CRT), more exactly for Mignotte [1] and Asmuth-Bloom [2] schemes. We prove that the majority of the solutions for Shamir’s scheme [3] can be translated to these schemes and, moreover, there are some interesting specific solutions.

2009/309 (PDF) Last updated: 2009-07-01
Fault Attacks on RSA Signatures with Partially Unknown Messages
Jean-Sebastien Coron, Antoine Joux, Ilya Kizhvatov, David Naccache, Pascal Paillier
Implementation

Fault attacks exploit hardware malfunctions to recover secrets from embedded electronic devices. In the late 90's, Boneh, DeMillo and Lipton introduced fault-based attacks on {\sc crt-rsa}. These attacks factor the signer's modulus when the message padding function is deterministic. However, the attack does not apply when the message is partially unknown, for example when messages contain some randomness which is recovered only when verifying a {\sl correct} signature. In this paper we...

2009/062 (PDF) Last updated: 2010-02-11
On Deterministic Polynomial-Time Equivalence of Computing the CRT-RSA Secret Keys and Factoring
Subhamoy Maitra, Santanu Sarkar
Public-key cryptography

Let $N = pq$ be the product of two large primes. Consider CRT-RSA with the public encryption exponent $e$ and private decryption exponents $d_p, d_q$. It is well known that given any one of $d_p$ or $d_q$ (or both) one can factorize $N$ in probabilistic poly$(\log N)$ time with success probability almost equal to 1. Though this serves all the practical purposes, from theoretical point of view, this is not a deterministic polynomial time algorithm. In this paper, we present a lattice based...

2009/024 (PDF) Last updated: 2009-06-10
On Second-Order Fault Analysis Resistance for CRT-RSA Implementations
Emmanuelle Dottax, Christophe Giraud, Matthieu Rivain, Yannick Sierra
Implementation

Since their publication in 1996, Fault Attacks have been widely studied from both theoretical and practical points of view and most of cryptographic systems have been shown vulnerable to this kind of attacks. Until recently, most of the theoretical fault attacks and countermeasures used a fault model which assumes that the attacker is able to disturb the execution of a cryptographic algorithm only once. However, this approach seems too restrictive since the publication in 2007 of the...

2008/483 (PDF) Last updated: 2010-11-02
Sharing DSS by the Chinese Remainder Theorem
Kamer Kaya, Ali Aydın Selçuk

In this paper, we propose a new threshold scheme for the Digital Signature Standard (DSS) using Asmuth-Bloom secret sharing based on the Chinese Remainder Theorem (CRT). To achieve the desired result, we first show how to realize certain other threshold primitives using Asmuth-Bloom secret sharing, such as joint random secret sharing, joint exponential random secret sharing, and joint exponential inverse random secret sharing. We prove the security of our scheme against a static adversary....

2007/039 (PDF) Last updated: 2007-02-14
New Branch Prediction Vulnerabilities in OpenSSL and Necessary Software Countermeasures
Onur Aciicmez, Shay Gueron, Jean-Pierre Seifert
Implementation

Software based side-channel attacks allow an unprivileged spy process to extract secret information from a victim (cryptosystem) process by exploiting some indirect leakage of ``side-channel'' information. It has been realized that some components of modern computer microarchitectures leak certain side-channel information and can create unforeseen security risks. An example of such MicroArchitectural Side-Channel Analysis is the Cache Attack --- a group of attacks that exploit information...

2007/010 (PDF) Last updated: 2007-05-30
Computing endomorphism rings of Jacobians of genus 2 curves over finite fields
David Freeman, Kristin Lauter
Implementation

We present probabilistic algorithms which, given a genus 2 curve C defined over a finite field and a quartic CM field K, determine whether the endomorphism ring of the Jacobian J of C is the full ring of integers in K. In particular, we present algorithms for computing the field of definition of, and the action of Frobenius on, the subgroups J[l^d] for prime powers l^d. We use these algorithms to create the first implementation of Eisentrager and Lauter's algorithm for computing Igusa...

2005/053 (PDF) Last updated: 2005-02-25
An Approach Towards Rebalanced RSA-CRT with Short Public Exponent
Hung-Min Sun, Mu-En Wu
Public-key cryptography

Based on the Chinese Remainder Theorem (CRT), Quisquater and Couvreur proposed an RSA variant, RSA-CRT, to speedup RSA decryption. According to RSA-CRT, Wiener suggested another RSA variant, Rebalanced RSA-CRT, to further speedup RSA-CRT decryption by shifting decryption cost to encryption cost. However, such an approach will make RSA encryption very time-consuming because the public exponent e in Rebalanced RSA-CRT will be of the same order of magnitude as £p(N). In this paper we study the...

2004/320 (PDF) (PS) Last updated: 2004-11-26
Upper Bounds for the Selection of the Cryptographic Key Lifetimes: Bounding the Risk of Key Exposure in the Presence of Faults
Alfonso De Gregorio
Implementation

With physical attacks threatening the security of current cryptographic schemes, no security policy can be developed without taking into account the physical nature of computation. In this article we first introduce the notion of \emph{Cryptographic Key Failure Tolerance}, then we offer a framework for the determination of upper bounds to the key lifetimes for any cryptographic scheme used in the presence of faults, given a desired (negligible) error-bound to the risk of key exposure....

2004/197 (PDF) (PS) Last updated: 2004-08-12
SPA-based attack against the modular reduction within a partially secured RSA-CRT implementation
Helmut Kahl
Implementation

This note describes an SPA-based side channel attack against a CRT implementation of an RSA function. In contrast with Novak’s attack [8], it concentrates on the initial modular reduction. With the help of lattice reduction it applies even to implementations which use a common randomising technique to ensure resistance against certain side channel attacks.

2004/147 (PDF) (PS) Last updated: 2004-06-23
Key Recovery Method for CRT Implementation of RSA
Matthew J. Campagna, Amit Sethi
Public-key cryptography

This paper analyzes a key recovery method for RSA signature generation or decryption implementations using the Chinese Remainder Theorem (CRT) speed up. The CRT-based RSA implementation is common in both low computing power devices and high speed cryptographic acceleration cards. This recovery method is designed to work in conjunction with a side-channel attack where the CRT exponents are discovered from a message decryption or signature generation operation, the public exponent is assumed...

2002/073 (PDF) (PS) Last updated: 2002-06-07
Fault attacks on RSA with CRT: Concrete Results and Practical Countermeasures
C. Aumüller, P. Bier, P. Hofreiter, W. Fischer, J. -P. Seifert
Implementation

This article describes concrete results and practically approved countermeasures concerning differential fault attacks on RSA using the CRT. It especially investigates smartcards with a RSA coprocessor where any hardware countermeasure to defeat such fault attacks have been switched off. This scenario has been chosen in order to completely analyze the resulting effects and errors occurring inside the hardware. Using the results of this kind of physical stress attack enables the development...

2001/096 (PS) Last updated: 2001-11-13
Constructing elliptic curves with a given number of points over a finite field
Amod Agashe, Kristin Lauter, Ramarathnam Venkatesan
Public-key cryptography

In using elliptic curves for cryptography, one often needs to construct elliptic curves with a given or known number of points over a given finite field. In the context of primality proving, Atkin and Morain suggested the use of the theory of complex multiplication to construct such curves. One of the steps in this method is the calculation of the Hilbert class polynomial $H_D(X)$ modulo some integer $p$ for a certain fundamental discriminant $D$. The usual way of doing this is to...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.