43 results sorted by ID
Probabilistic Algorithms with applications to countering Fault Attacks on Lattice based Post-Quantum Cryptography
Nimish Mishra, Debdeep Mukhopadhyay
Attacks and cryptanalysis
Fault attacks that exploit the propagation of effective/ineffective faults present a richer attack surface than Differential Fault Attacks, in the sense that the adversary depends on a single bit of information to eventually leak secret cryptographic material. In the recent past, a number of propagation-based fault attacks on Lattice-based Key Encapsulation Mechanisms have been proposed; many of which have no known countermeasures. In this work, we propose an orthogonal countermeasure...
Lattice Reduction Meets Key-Mismatch: New Misuse Attack on Lattice-Based NIST Candidate KEMs
Ruiqi Mi, Haodong Jiang, Zhenfeng Zhang
Public-key cryptography
Resistance to key misuse attacks is a vital property for key encapsulation mechanisms(KEMs)in NIST-PQC standardization process. In key mismatch attack, the adversary recovers reused secret key with the help of an oracle $\mathcal{O}$ that indicates whether the shared key matches or not. Key mismatch attack is more powerful when fewer oracle queries are required. A series of works tried to reduce query times, Qin et al. [AISACRYPT 2021] gave a systematic approach to finding lower bound of...
Speedy Error Reconciliation
Kaibo Liu, Xiaozhuo Gu, Peixin Ren, Xuwen Nie
Applications
Introducing small errors in the lattice-based key exchange protocols, although it is resistant to quantum computing attacks, will cause both parties to only get roughly equal secret values, which brings uncertainty to the negotiation of the key agreement. The role of the error reconciliation mechanism is to eliminate this uncertainty and ensure that both parties can reach a consensus. This paper designs a new error reconciliation mechanism: Speedy Error Reconciliation (SER), which can...
CARiMoL: A Configurable Hardware Accelerator for Ringand Module Lattice-Based Post-Quantum Cryptography
Afifa Ishtiaq, Dr. Muhammad Shafique, Dr. Osman Hassan
Implementation
Abstract—CARiMoL is a novel run-time Configurable Hardware Accelerator for Ring and Module Lattice-based postquantum
cryptography. It’s flexible design can be configured to key-pair generation, encapsulation, and decapsulation for NewHope and CRYSTALS-Kyber schemes using same hardware. CARiMoL offers run-time configurability for multiple security levels of NewHope and CRYSTALS-Kyber schemes, supporting both Chosen-Plaintext Attack (CPA) and Chosen-Ciphertext Attack (CCA) secure...
Polar Coding for Ring-LWE-Based Public Key Encryption
Jiabo Wang, Cong Ling
Public-key cryptography
Cryptographic constructions based on $\textit{ring learning with errors}$ (RLWE) have emerged as one of the front runners for the standardization of post quantum public key cryptography. As the standardization process continues, optimizing specific parts of proposed schemes becomes a worthwhile endeavor. In this work we focus on using error correcting codes to alleviate a natural trade-off present in most schemes; namely, we would like a wider error distribution to increase security, but a...
2021/536
Last updated: 2021-12-29
Analyzing the Potential of Transport Triggered Architecture for Lattice-based Cryptography Algorithms
Latif AKÇAY, Berna ÖRS
Implementation
Lattice-based structures offer considerable possibilities for post-quantum cryptography. Recently, many algorithms have been built on hard lattice problems. The three of the remaining four in the final round of the post-quantum cryptography standardization process use lattice-based methods. Especially in embedded systems, these algorithms should be operated effectively. In this study, the potential of transport triggered architecture is examined in this sense. We try to compare open source...
Fault Attacks on CCA-secure Lattice KEMs
Peter Pessl, Lukas Prokop
Implementation
NIST's post-quantum standardization effort very recently entered its final round. This makes studying the implementation-security aspect of the remaining candidates an increasingly important task, as such analyses can aid in the final selection process and enable appropriately secure wider deployment after standardization. However, lattice-based key-encapsulation mechanisms (KEMs), which are prominently represented among the finalists, have thus far received little attention when it comes to...
Recovery Attack on Bob's Secrets in CRYSTALS-KYBER and SABER
Satoshi Okada, Yuntao Wang
Public-key cryptography
Quantum computing capability outperforms that of the classic computers overwhelmingly, which seriously threatens modern public-key cryptography. For this reason, the National Institute of Standards and Technology (NIST) and several other standards organizations are progressing the standardization for post-quantum cryptography (PQC). There are two contenders among those candidates, CRYSTALS-KYBER and SABER, lattice-based encryption algorithms in the third round finalists of NIST's PQC...
Key Mismatch Attack on NewHope Revisited
Jan Vacek, Jan Václavek
One of the NIST Post-Quantum Cryptography Standardization Process Round 2 candidates is the NewHope cryptosystem, which is a suite of two RLWE based key encapsulation mechanisms. Recently, four key reuse attacks were proposed against NewHope by Bauer et al., Qin et al., Bhasin et al. and Okada et al. In these attacks, the adversary has access to the key mismatch oracle which tells her if a given ciphertext decrypts to a given message under the targeted secret key. Previous attacks either...
Compact Dilithium Implementations on Cortex-M3 and Cortex-M4
Denisa O. C. Greconici, Matthias J. Kannwischer, Amber Sprenkels
Implementation
We present implementations of the lattice-based digital signature scheme Dilithium for ARM Cortex-M3 and ARM Cortex-M4. Dilithium is one of the three signature finalists of the NIST post-quantum cryptography competition. As our Cortex-M4 target, we use the popular STM32F407-DISCOVERY development board. Compared to the previous speed records on the Cortex-M4 by Ravi, Gupta, Chattopadhyay, and Bhasin we speed up the key operations $\text{NTT}$ and $\text{NTT}^{-1}$ by 20% which together with...
Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs
Bo-Yeon Sim, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Taeho Lee, Jaeseung Han, Hyojin Yoon, Jihoon Cho, Dong-Guk Han
Public-key cryptography
We propose single-trace side-channel attacks against lattice-based KEMs, the current candidates of the NIST's standardization project. More specifically, we analyze the message encoding in the encapsulation of lattice-based KEMs to obtain the ephemeral session keys, concluding that a single trace leakage allows a whole key recovery: our implementation on a ChipWhisperer UFO STM32F3 target board shows 100% success rates for Crystals-Kyber and Saber regardless of optimization level, and more...
A Side-Channel Resistant Implementation of SABER
Michiel Van Beirendonck, Jan-Pieter D'Anvers, Angshuman Karmakar, Josep Balasch, Ingrid Verbauwhede
Implementation
The candidates for the NIST Post-Quantum Cryptography standardization have undergone extensive studies on efficiency and theoretical security, but research on their side-channel security is largely lacking. This remains a considerable obstacle for their real-world deployment, where side-channel security can be a critical requirement. This work describes a side-channel resistant instance of Saber, one of the lattice-based candidates, using masking as a countermeasure. Saber proves to be very...
Improving Key Mismatch Attack on NewHope with Fewer Queries
Satoshi Okada, Yuntao Wang, Tsuyoshi Takagi
Public-key cryptography
NewHope is a lattice cryptoscheme based on the Ring Learning With Errors (Ring-LWE) problem, and it has received much attention among the candidates of the NIST post-quantum cryptography standardization project. Recently, there have been key mismatch attacks on NewHope, where the adversary tries to recover the server’s secret key by observing the mismatch of the shared key from chosen queries. At CT-RSA 2019, Bauer et al. first proposed a key mismatch attack on NewHope, and then at ESORICS...
Drop by Drop you break the rock - Exploiting generic vulnerabilities in Lattice-based PKE/KEMs using EM-based Physical Attacks
Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, Anupam Chattopadhyay
Public-key cryptography
We report an important implementation vulnerability exploitable through physical attacks for message recovery
in five lattice-based public-key encryption schemes (PKE) and Key Encapsulation Mechanisms (KEM) -
NewHope, Kyber, Saber, Round5 and LAC that are currently competing in the second round of NIST's standardization process for post-quantum cryptography. The reported vulnerability exists in the message decoding function which
is a fundamental kernel present in lattice-based PKE/KEMs and...
RISQ-V: Tightly Coupled RISC-V Accelerators for Post-Quantum Cryptography
Tim Fritzmann, Georg Sigl, Johanna Sepúlveda
Public-key cryptography
Empowering electronic devices to support Post-Quantum Cryptography (PQC) is a challenging task. PQC introduces new mathematical elements and operations which are usually not easy to implement on standard processors. Especially for low cost and resource constraint devices, hardware acceleration is usually required. In addition, as the standardization process of PQC is still ongoing, a focus on maintaining flexibility is mandatory. To cope with such requirements, hardware/software co-design...
Defeating NewHope with a Single Trace
Dorian Amiet, Andreas Curiger, Lukas Leuenberger, Paul Zbinden
Public-key cryptography
The key encapsulation method NewHope allows two parties to agree on a secret key. The scheme includes a private and a public key. While the public key is used to encipher a random shared secret, the private key enables to decipher the ciphertext. NewHope is a candidate in the NIST post-quantum project, whose aim is to standardize cryptographic systems that are secure against attacks originating from both quantum and classical computers. While NewHope relies on the theory of quantum-resistant...
An upper bound on the decryption failure rate of static-key NewHope
John M. Schanck
We give a new proof that the decryption failure rate of NewHope512 is at most $2^{-398.8}$. As in previous work, this failure rate is with respect to random, honestly generated, secret key and ciphertext pairs. However, our technique can also be applied to a fixed secret key. We demonstrate our technique on some subsets of the NewHope1024 key space, and we identify a large subset of NewHope1024 keys with failure rates of no more than $2^{-439.5}$.
AKCN-E8: Compact and Flexible KEM from Ideal Lattice
Zhengzhong JIn, Yunlei Zhao
Cryptographic protocols
A remarkable breakthrough in mathematics in recent years is the proof of the long-standing conjecture: sphere packing (i.e., packing unit balls) in the $E_8$ lattice is optimal in the sense of the best density \cite{V17} for sphere packing in $\mathbb{R}^8$. In this work, based on the $E_8$ lattice code, we design a mechanism for asymmetric key consensus from noise (AKCN), referred to as AKCN-E8, for error correction and key consensus. As a direct application of the AKCN-E8...
ISA Extensions for Finite Field Arithmetic - Accelerating Kyber and NewHope on RISC-V
Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen, Richard Petri
Implementation
We present and evaluate a custom extension to the RISC-V instruction set
for finite fields arithmetic. The result serves as a very compact
approach to software-hardware co-design of PQC implementations in the
context of small embedded processors such as smartcards. The extension
provides instructions that implement finite field operations with
subsequent reduction of the result. As small finite fields are used in
various PQC schemes, such instructions can provide a considerable
speedup for...
Cortex-M4 Optimizations for \{R,M\}LWE Schemes
Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, François Gérard
Public-key cryptography
This paper proposes various optimizations for lattice-based key-encapsulation mechanisms (KEM) using the Number Theoretic Transform (NTT) on the popular ARM Cortex-M4 microcontroller. Improvements come in the form of a faster code using more efficient modular reductions, small polynomial multiplications and more aggressive layer merging in the NTT but also reduced stack usage. We test those optimizations in software implementations of Kyber and NewHope, both round 2 candidates in the NIST...
Tight bound on NewHope failure probability
Thomas Plantard, Arnaud Sipasseuth, Willy Susilo, Vincent Zucca
Public-key cryptography
NewHope Key Encapsulation Mechanism (KEM) has been presented at USENIX 2016 by Alchim et al. and is one of the remaining lattice-based candidates to the post-quantum standardization initiated by the NIST. However, despite the relative simplicity of the protocol, the bound on the decapsulation failure probability resulting from the original analysis is not tight.
In this work we refine this analysis to get a tight upper-bound on this probability which happens to be much lower than what was...
An Efficient Key Mismatch Attack on the NIST Second Round Candidate Kyber
Yue Qin, Chi Cheng, Jintai Ding
Public-key cryptography
Kyber is a KEM based their security on the Modular Learning with Errors problem and was selected in the second round of NIST Post-quantum standardization process. Before we put Kyber into practical application, it is very important to assess its security in hard practical conditions especially when the Fujisaki-Okamoto transformations are neglected. In this paper, we propose an efficient key mismatch attacks on Kyber, which can recover one participant's secret key if the public key is...
Exploring Energy Efficient Quantum-resistant Signal Processing Using Array Processors
Hamid Nejatollahi, Sina Shahhosseini, Rosario Cammarota, Nikil Dutt
Public-key cryptography
Quantum computers threaten to compromise public-key cryptography schemes such as DSA and ECDSA in polynomial time, which poses an imminent threat to secure signal processing. The cryptography community has responded with the
development and standardization of post-quantum cryptography (PQC) algorithms, a class of public-key algorithms based on hard problems that no known quantum algorithms can solve in polynomial time. Ring learning with error (RLWE) lattice-
based cryptographic (LBC)...
Sapphire: A Configurable Crypto-Processor for Post-Quantum Lattice-based Protocols (Extended Version)
Utsav Banerjee, Tenzin S. Ukyab, Anantha P. Chandrakasan
Implementation
Public key cryptography protocols, such as RSA and elliptic curve cryptography, will be rendered insecure by Shor’s algorithm when large-scale quantum computers are built. Cryptographers are working on quantum-resistant algorithms, and lattice-based cryptography has emerged as a prime candidate. However, high computational complexity of these algorithms makes it challenging to implement lattice-based protocols on low-power embedded devices. To address this challenge, we present Sapphire – a...
Efficiently Masking Binomial Sampling at Arbitrary Orders for Lattice-Based Crypto
Tobias Schneider, Clara Paglialonga, Tobias Oder, Tim Güneysu
Implementation
With the rising popularity of lattice-based cryptography, the Learning with Errors (LWE) problem has emerged as a fundamental core of numerous encryption and key exchange schemes. Many LWE-based schemes have in common that they require sampling from a discrete Gaussian distribution which comes with a number of challenges for the practical instantiation of those schemes. One of these is the inclusion of countermeasures against a physical side-channel adversary. While several works discuss the...
SPQCop: Side-channel protected Post-Quantum Cryptoprocessor
Arpan Jati, Naina Gupta, Anupam Chattopadhyay, Somitra Kumar Sanadhya
Implementation
The past few decades have seen significant progress in practically realizable quantum technologies. It is well known since the work of Peter Shor that large scale quantum computers will threaten the security of most of the currently used public key cryptographic algorithms. This has spurred the cryptography community to design algorithms which will remain safe even with the emergence of large scale quantum computing systems. An effort in this direction is the currently ongoing post-quantum...
A Complete and Optimized Key Mismatch Attack on NIST Candidate NewHope
Yue Qin, Chi Cheng, Jintai Ding
Public-key cryptography
In CT-RSA 2019, Bauer et al. have analyzed the case when the public key is reused for the NewHope key encapsulation mechanism (KEM), a second-round candidate in the NIST Post-quantum Standard process. They proposed an elegant method to recover coefficients ranging from -6 to 4 in the secret key. We repeat their experiments but there are two fundamental problems. First, even for coefficients in [-6,4] we cannot recover at least 262 of them in each secret key with 1024 coefficients....
Assessment of the Key-Reuse Resilience of NewHope
Aurélie Bauer, Henri Gilbert, Guénaël Renault, Mélissa Rossi
Public-key cryptography
NewHope is a suite of two efficient Ring-Learning-With-Error based key encapsulation mechanisms (KEMs) that has been proposed to the NIST call for proposals for post-quantum standardization. In this paper, we study the security of NewHope when an active adversary accesses a key establishment and is given access to an oracle, called key mismatch oracle, which indicates whether her guess of the shared key value derived by the party targeted by the attack is correct or not. This attack model...
Partial Key Exposure in Ring-LWE-Based Cryptosystems: Attacks and Resilience
Dana Dachman-Soled, Huijing Gong, Mukul Kulkarni, Aria Shahverdi
Public-key cryptography
We initiate the study of partial key exposure in ring-LWE-based cryptosystems.
Specifically, we
- Introduce the search and decision Leaky-RLWE assumptions (Leaky-SRLWE, Leaky-DRLWE), to formalize the hardness of search/decision RLWE under leakage of some fraction of coordinates of the NTT transform of the RLWE secret and/or error.
- Present and implement an efficient key exposure attack that, given certain $1/4$-fraction of the coordinates of the NTT transform of the RLWE secret, along...
Preprocess-then-NTT Technique and Its Applications to KYBER and NEWHOPE
Shuai Zhou, Haiyang Xue, Daode Zhang, Kunpeng Wang, Xianhui Lu, Bao Li, Jingnan He
The Number Theoretic Transform (NTT) provides efficient algorithm for multiplying large degree polynomials. It is commonly used in cryptographic schemes that are based on the hardness of the Ring Learning With Errors problem (RLWE), which is a popular basis for post-quantum key exchange, encryption and digital signature. To apply NTT, modulus q should satisfy that q = 1 mod 2n, RLWE-based schemes have to choose an oversized modulus, which leads to excessive bandwidth. In this work, we...
Domain-specific Accelerators for Ideal Lattice-based Public Key Protocols
Hamid Nejatollahi, Nikil Dutt, Indranil Banerjee, Rosario Cammarota
Post Quantum Lattice-Based Cryptography (LBC) schemes are increasingly gaining attention in traditional and emerging security problems, such as encryption, digital signature, key exchange, homomorphic encryption etc, to address security needs of both short and long-lived devices — due to their foundational properties and ease of implementation. However, LBC schemes induce higher computational demand compared to classic schemes (e.g., DSA, ECDSA) for equivalent security guarantees, making...
Number "Not Used" Once - Practical fault attack on pqm4 implementations of NIST candidates
Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay, Debdeep Mukhopadhyay
Public-key cryptography
In this paper, we demonstrate practical fault attacks over a number of lattice based schemes, in particular NewHope, Kyber, Frodo, Dilithium which are based on the hardness of the Learning with Errors (LWE) problem. One of the common traits of all the considered LWE schemes is the use of nonces as domain separators to sample the secret components of the LWE instance. We show that simple faults targeting the usage of nonce can result in a nonce-reuse scenario which allows key recovery and...
Analysis of Error-Correcting Codes for Lattice-Based Key Exchange
Tim Fritzmann, Thomas Pöppelmann, Johanna Sepulveda
Public-key cryptography
Lattice problems allow the construction of very efficient key exchange and public-key encryption schemes. When using the Learning with Errors (LWE) or Ring-LWE (RLWE) problem such schemes exhibit an interesting trade-off between decryption error rate and security. The reason is that secret and error distributions with a larger standard deviation lead to better security but also increase the chance of decryption failures. As a consequence, various message/key encoding or reconciliation...
NTRU-LPR IND-CPA: A New Ideal Lattices-based Scheme
Soda Diop, Bernard Ousmane Sané, Nafissatou Diarra, Michel Seck
In this paper, we propose NTRU-LPR IND-CPA, a new secure scheme based on the decisional variant of Bounded Distance Decoding problem over rings (DR-BDD). This scheme is IND-CPA secure and has two KEM variants IND-CCA2 secure in the random oracle model. NTRU-LPR IND-CPA is similar to NTRU LPRime and LPR Cryptosystem. NTRU-LPR IND-CPA does not have a problem of decryption failures. Our polynomial ring can be any ring of the form $\mathbb{Z}[x]/(q,f(x))$, where $f$ is a polynomial of degree...
Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography
Gregor Seiler
Implementation
Constant-time polynomial multiplication is one of the most time-consuming operations in many lattice-based cryptographic constructions. For schemes based on the hardness of Ring-LWE in power-of-two cyclotomic fields with completely splitting primes, the AVX2 optimized implementation of the Number-Theoretic Transform (NTT) from the NewHope key-exchange scheme is the state of the art for fast multiplication. It uses floating point vector instructions. We show that by using a modification of...
Breakdown Resilience of Key Exchange Protocols: NewHope, TLS 1.3, and Hybrids
Jacqueline Brendel, Marc Fischlin, Felix Günther
Cryptographic protocols
Broken cryptographic algorithms and hardness assumptions are a constant threat to real-world protocols. Prominent examples are hash functions for which collisions become known, or number-theoretic assumptions which are threatened by advances in quantum computing. Especially when it comes to key exchange protocols, the switch to quantum-resistant primitives has begun and aims to protect today's secrets against future developments, moving from common Diffie-Hellman-based solutions to...
Generic Forward-Secure Key Agreement Without Signatures
Cyprien de Saint Guilhem, Nigel P. Smart, Bogdan Warinschi
Cryptographic protocols
We present a generic, yet simple and efficient transformation to obtain a forward secure authenticated key exchange protocol from a two-move passively secure unauthenticated key agreement scheme (such as standard Diffie--Hellman or Frodo or NewHope). Our construction requires only an IND-CCA public key encryption scheme (such as RSA-OAEP or a method based on ring-LWE), and a message authentication code. Particularly relevant in the context of the state-of-the-art of postquantum secu re...
High Performance Post-Quantum Key Exchange on FPGAs
Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng, Chen-Mou Cheng, Bo-Yin Yang
Lattice-based cryptography is a highly potential candidate that protects against the threat of quantum attack. At Usenix Security 2016, Alkim, Ducas, Pöpplemann, and Schwabe proposed a post-quantum key exchange scheme called NewHope, based on a variant of lattice problem, the ring-learning-with-errors (RLWE) problem.
In this work, we propose a high performance hardware architecture for NewHope. Our implementation requires 6,680 slices, 9,412 FFs, 18,756 LUTs, 8 DSPs and 14 BRAMs on Xilinx...
CRYSTALS -- Kyber: a CCA-secure module-lattice-based KEM
Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé
Public-key cryptography
Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digital-signature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes.
This paper introduces Kyber (part of CRYSTALS -- Cryptographic Suite for Algebraic Lattices -- a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of...
Post-Quantum Key Exchange on ARMv8-A -- A New Hope for NEON made Simple
Silvan Streit, Fabrizio De Santis
Implementation
NewHope and NewHope-Simple are two recently proposed post-quantum key exchange protocols based on the hardness of the Ring-LWE problem. Due to their high security margins and performance, there have been already discussions and proposals for integrating them into Internet standards, like TLS, and anonymity network protocols, like Tor. In this work, we present time-constant and vector-optimized implementations of NewHope and NewHope-Simple for ARMv8-A 64-bit processors which target high-speed...
NewHope without reconciliation
Erdem Alkim, Léo Ducas, Thomas Pöppelmann, Peter Schwabe
Public-key cryptography
In this paper we introduce NewHope-Simple, a variant of the NewHope Ring-LWE-based key exchange that is using a straight-forward transformation from Ring-LWE encryption to a passively secure KEM (or key-exchange scheme). The main advantage of NewHopeLP-Simple over NewHope is simplicity. In particular, it avoids the error-reconciliation mechanism originally proposed by Ding. The explanation of his method, combined with other tricks, like unbiasing the key following Peikert's tweak and using...
NewHope on ARM Cortex-M
Erdem Alkim, Philipp Jakubeit, Peter Schwabe
Implementation
Recently, Alkim, Ducas, Pöppelmann, and Schwabe proposed a Ring-LWE-based
key exchange protocol called NewHope (Usenix Securitz 2016) and illustrated that
this protocol is very efficient on large Intel processors.
Their paper also claims that the parameter choice enables efficient
implementation on small embedded processors.
In this paper we show that these claims are actually correct
and present NewHope software for the ARM Cortex-M family of
32-bit microcontrollers. More specifically, our...
Frodo: Take off the ring! Practical, Quantum-Secure Key Exchange from LWE
Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth Raghunathan, Douglas Stebila
Public-key cryptography
Lattice-based cryptography offers some of the most attractive primitives
believed to be resistant to quantum computers. Following increasing
interest from both companies and government agencies in building quantum
computers, a number of works have proposed instantiations of practical post-quantum key exchange protocols based on hard problems in ideal lattices, mainly based on the Ring Learning With Errors (R-LWE) problem. While
ideal lattices facilitate major efficiency and storage benefits...
Fault attacks that exploit the propagation of effective/ineffective faults present a richer attack surface than Differential Fault Attacks, in the sense that the adversary depends on a single bit of information to eventually leak secret cryptographic material. In the recent past, a number of propagation-based fault attacks on Lattice-based Key Encapsulation Mechanisms have been proposed; many of which have no known countermeasures. In this work, we propose an orthogonal countermeasure...
Resistance to key misuse attacks is a vital property for key encapsulation mechanisms(KEMs)in NIST-PQC standardization process. In key mismatch attack, the adversary recovers reused secret key with the help of an oracle $\mathcal{O}$ that indicates whether the shared key matches or not. Key mismatch attack is more powerful when fewer oracle queries are required. A series of works tried to reduce query times, Qin et al. [AISACRYPT 2021] gave a systematic approach to finding lower bound of...
Introducing small errors in the lattice-based key exchange protocols, although it is resistant to quantum computing attacks, will cause both parties to only get roughly equal secret values, which brings uncertainty to the negotiation of the key agreement. The role of the error reconciliation mechanism is to eliminate this uncertainty and ensure that both parties can reach a consensus. This paper designs a new error reconciliation mechanism: Speedy Error Reconciliation (SER), which can...
Abstract—CARiMoL is a novel run-time Configurable Hardware Accelerator for Ring and Module Lattice-based postquantum cryptography. It’s flexible design can be configured to key-pair generation, encapsulation, and decapsulation for NewHope and CRYSTALS-Kyber schemes using same hardware. CARiMoL offers run-time configurability for multiple security levels of NewHope and CRYSTALS-Kyber schemes, supporting both Chosen-Plaintext Attack (CPA) and Chosen-Ciphertext Attack (CCA) secure...
Cryptographic constructions based on $\textit{ring learning with errors}$ (RLWE) have emerged as one of the front runners for the standardization of post quantum public key cryptography. As the standardization process continues, optimizing specific parts of proposed schemes becomes a worthwhile endeavor. In this work we focus on using error correcting codes to alleviate a natural trade-off present in most schemes; namely, we would like a wider error distribution to increase security, but a...
Lattice-based structures offer considerable possibilities for post-quantum cryptography. Recently, many algorithms have been built on hard lattice problems. The three of the remaining four in the final round of the post-quantum cryptography standardization process use lattice-based methods. Especially in embedded systems, these algorithms should be operated effectively. In this study, the potential of transport triggered architecture is examined in this sense. We try to compare open source...
NIST's post-quantum standardization effort very recently entered its final round. This makes studying the implementation-security aspect of the remaining candidates an increasingly important task, as such analyses can aid in the final selection process and enable appropriately secure wider deployment after standardization. However, lattice-based key-encapsulation mechanisms (KEMs), which are prominently represented among the finalists, have thus far received little attention when it comes to...
Quantum computing capability outperforms that of the classic computers overwhelmingly, which seriously threatens modern public-key cryptography. For this reason, the National Institute of Standards and Technology (NIST) and several other standards organizations are progressing the standardization for post-quantum cryptography (PQC). There are two contenders among those candidates, CRYSTALS-KYBER and SABER, lattice-based encryption algorithms in the third round finalists of NIST's PQC...
One of the NIST Post-Quantum Cryptography Standardization Process Round 2 candidates is the NewHope cryptosystem, which is a suite of two RLWE based key encapsulation mechanisms. Recently, four key reuse attacks were proposed against NewHope by Bauer et al., Qin et al., Bhasin et al. and Okada et al. In these attacks, the adversary has access to the key mismatch oracle which tells her if a given ciphertext decrypts to a given message under the targeted secret key. Previous attacks either...
We present implementations of the lattice-based digital signature scheme Dilithium for ARM Cortex-M3 and ARM Cortex-M4. Dilithium is one of the three signature finalists of the NIST post-quantum cryptography competition. As our Cortex-M4 target, we use the popular STM32F407-DISCOVERY development board. Compared to the previous speed records on the Cortex-M4 by Ravi, Gupta, Chattopadhyay, and Bhasin we speed up the key operations $\text{NTT}$ and $\text{NTT}^{-1}$ by 20% which together with...
We propose single-trace side-channel attacks against lattice-based KEMs, the current candidates of the NIST's standardization project. More specifically, we analyze the message encoding in the encapsulation of lattice-based KEMs to obtain the ephemeral session keys, concluding that a single trace leakage allows a whole key recovery: our implementation on a ChipWhisperer UFO STM32F3 target board shows 100% success rates for Crystals-Kyber and Saber regardless of optimization level, and more...
The candidates for the NIST Post-Quantum Cryptography standardization have undergone extensive studies on efficiency and theoretical security, but research on their side-channel security is largely lacking. This remains a considerable obstacle for their real-world deployment, where side-channel security can be a critical requirement. This work describes a side-channel resistant instance of Saber, one of the lattice-based candidates, using masking as a countermeasure. Saber proves to be very...
NewHope is a lattice cryptoscheme based on the Ring Learning With Errors (Ring-LWE) problem, and it has received much attention among the candidates of the NIST post-quantum cryptography standardization project. Recently, there have been key mismatch attacks on NewHope, where the adversary tries to recover the server’s secret key by observing the mismatch of the shared key from chosen queries. At CT-RSA 2019, Bauer et al. first proposed a key mismatch attack on NewHope, and then at ESORICS...
We report an important implementation vulnerability exploitable through physical attacks for message recovery in five lattice-based public-key encryption schemes (PKE) and Key Encapsulation Mechanisms (KEM) - NewHope, Kyber, Saber, Round5 and LAC that are currently competing in the second round of NIST's standardization process for post-quantum cryptography. The reported vulnerability exists in the message decoding function which is a fundamental kernel present in lattice-based PKE/KEMs and...
Empowering electronic devices to support Post-Quantum Cryptography (PQC) is a challenging task. PQC introduces new mathematical elements and operations which are usually not easy to implement on standard processors. Especially for low cost and resource constraint devices, hardware acceleration is usually required. In addition, as the standardization process of PQC is still ongoing, a focus on maintaining flexibility is mandatory. To cope with such requirements, hardware/software co-design...
The key encapsulation method NewHope allows two parties to agree on a secret key. The scheme includes a private and a public key. While the public key is used to encipher a random shared secret, the private key enables to decipher the ciphertext. NewHope is a candidate in the NIST post-quantum project, whose aim is to standardize cryptographic systems that are secure against attacks originating from both quantum and classical computers. While NewHope relies on the theory of quantum-resistant...
We give a new proof that the decryption failure rate of NewHope512 is at most $2^{-398.8}$. As in previous work, this failure rate is with respect to random, honestly generated, secret key and ciphertext pairs. However, our technique can also be applied to a fixed secret key. We demonstrate our technique on some subsets of the NewHope1024 key space, and we identify a large subset of NewHope1024 keys with failure rates of no more than $2^{-439.5}$.
A remarkable breakthrough in mathematics in recent years is the proof of the long-standing conjecture: sphere packing (i.e., packing unit balls) in the $E_8$ lattice is optimal in the sense of the best density \cite{V17} for sphere packing in $\mathbb{R}^8$. In this work, based on the $E_8$ lattice code, we design a mechanism for asymmetric key consensus from noise (AKCN), referred to as AKCN-E8, for error correction and key consensus. As a direct application of the AKCN-E8...
We present and evaluate a custom extension to the RISC-V instruction set for finite fields arithmetic. The result serves as a very compact approach to software-hardware co-design of PQC implementations in the context of small embedded processors such as smartcards. The extension provides instructions that implement finite field operations with subsequent reduction of the result. As small finite fields are used in various PQC schemes, such instructions can provide a considerable speedup for...
This paper proposes various optimizations for lattice-based key-encapsulation mechanisms (KEM) using the Number Theoretic Transform (NTT) on the popular ARM Cortex-M4 microcontroller. Improvements come in the form of a faster code using more efficient modular reductions, small polynomial multiplications and more aggressive layer merging in the NTT but also reduced stack usage. We test those optimizations in software implementations of Kyber and NewHope, both round 2 candidates in the NIST...
NewHope Key Encapsulation Mechanism (KEM) has been presented at USENIX 2016 by Alchim et al. and is one of the remaining lattice-based candidates to the post-quantum standardization initiated by the NIST. However, despite the relative simplicity of the protocol, the bound on the decapsulation failure probability resulting from the original analysis is not tight. In this work we refine this analysis to get a tight upper-bound on this probability which happens to be much lower than what was...
Kyber is a KEM based their security on the Modular Learning with Errors problem and was selected in the second round of NIST Post-quantum standardization process. Before we put Kyber into practical application, it is very important to assess its security in hard practical conditions especially when the Fujisaki-Okamoto transformations are neglected. In this paper, we propose an efficient key mismatch attacks on Kyber, which can recover one participant's secret key if the public key is...
Quantum computers threaten to compromise public-key cryptography schemes such as DSA and ECDSA in polynomial time, which poses an imminent threat to secure signal processing. The cryptography community has responded with the development and standardization of post-quantum cryptography (PQC) algorithms, a class of public-key algorithms based on hard problems that no known quantum algorithms can solve in polynomial time. Ring learning with error (RLWE) lattice- based cryptographic (LBC)...
Public key cryptography protocols, such as RSA and elliptic curve cryptography, will be rendered insecure by Shor’s algorithm when large-scale quantum computers are built. Cryptographers are working on quantum-resistant algorithms, and lattice-based cryptography has emerged as a prime candidate. However, high computational complexity of these algorithms makes it challenging to implement lattice-based protocols on low-power embedded devices. To address this challenge, we present Sapphire – a...
With the rising popularity of lattice-based cryptography, the Learning with Errors (LWE) problem has emerged as a fundamental core of numerous encryption and key exchange schemes. Many LWE-based schemes have in common that they require sampling from a discrete Gaussian distribution which comes with a number of challenges for the practical instantiation of those schemes. One of these is the inclusion of countermeasures against a physical side-channel adversary. While several works discuss the...
The past few decades have seen significant progress in practically realizable quantum technologies. It is well known since the work of Peter Shor that large scale quantum computers will threaten the security of most of the currently used public key cryptographic algorithms. This has spurred the cryptography community to design algorithms which will remain safe even with the emergence of large scale quantum computing systems. An effort in this direction is the currently ongoing post-quantum...
In CT-RSA 2019, Bauer et al. have analyzed the case when the public key is reused for the NewHope key encapsulation mechanism (KEM), a second-round candidate in the NIST Post-quantum Standard process. They proposed an elegant method to recover coefficients ranging from -6 to 4 in the secret key. We repeat their experiments but there are two fundamental problems. First, even for coefficients in [-6,4] we cannot recover at least 262 of them in each secret key with 1024 coefficients....
NewHope is a suite of two efficient Ring-Learning-With-Error based key encapsulation mechanisms (KEMs) that has been proposed to the NIST call for proposals for post-quantum standardization. In this paper, we study the security of NewHope when an active adversary accesses a key establishment and is given access to an oracle, called key mismatch oracle, which indicates whether her guess of the shared key value derived by the party targeted by the attack is correct or not. This attack model...
We initiate the study of partial key exposure in ring-LWE-based cryptosystems. Specifically, we - Introduce the search and decision Leaky-RLWE assumptions (Leaky-SRLWE, Leaky-DRLWE), to formalize the hardness of search/decision RLWE under leakage of some fraction of coordinates of the NTT transform of the RLWE secret and/or error. - Present and implement an efficient key exposure attack that, given certain $1/4$-fraction of the coordinates of the NTT transform of the RLWE secret, along...
The Number Theoretic Transform (NTT) provides efficient algorithm for multiplying large degree polynomials. It is commonly used in cryptographic schemes that are based on the hardness of the Ring Learning With Errors problem (RLWE), which is a popular basis for post-quantum key exchange, encryption and digital signature. To apply NTT, modulus q should satisfy that q = 1 mod 2n, RLWE-based schemes have to choose an oversized modulus, which leads to excessive bandwidth. In this work, we...
Post Quantum Lattice-Based Cryptography (LBC) schemes are increasingly gaining attention in traditional and emerging security problems, such as encryption, digital signature, key exchange, homomorphic encryption etc, to address security needs of both short and long-lived devices — due to their foundational properties and ease of implementation. However, LBC schemes induce higher computational demand compared to classic schemes (e.g., DSA, ECDSA) for equivalent security guarantees, making...
In this paper, we demonstrate practical fault attacks over a number of lattice based schemes, in particular NewHope, Kyber, Frodo, Dilithium which are based on the hardness of the Learning with Errors (LWE) problem. One of the common traits of all the considered LWE schemes is the use of nonces as domain separators to sample the secret components of the LWE instance. We show that simple faults targeting the usage of nonce can result in a nonce-reuse scenario which allows key recovery and...
Lattice problems allow the construction of very efficient key exchange and public-key encryption schemes. When using the Learning with Errors (LWE) or Ring-LWE (RLWE) problem such schemes exhibit an interesting trade-off between decryption error rate and security. The reason is that secret and error distributions with a larger standard deviation lead to better security but also increase the chance of decryption failures. As a consequence, various message/key encoding or reconciliation...
In this paper, we propose NTRU-LPR IND-CPA, a new secure scheme based on the decisional variant of Bounded Distance Decoding problem over rings (DR-BDD). This scheme is IND-CPA secure and has two KEM variants IND-CCA2 secure in the random oracle model. NTRU-LPR IND-CPA is similar to NTRU LPRime and LPR Cryptosystem. NTRU-LPR IND-CPA does not have a problem of decryption failures. Our polynomial ring can be any ring of the form $\mathbb{Z}[x]/(q,f(x))$, where $f$ is a polynomial of degree...
Constant-time polynomial multiplication is one of the most time-consuming operations in many lattice-based cryptographic constructions. For schemes based on the hardness of Ring-LWE in power-of-two cyclotomic fields with completely splitting primes, the AVX2 optimized implementation of the Number-Theoretic Transform (NTT) from the NewHope key-exchange scheme is the state of the art for fast multiplication. It uses floating point vector instructions. We show that by using a modification of...
Broken cryptographic algorithms and hardness assumptions are a constant threat to real-world protocols. Prominent examples are hash functions for which collisions become known, or number-theoretic assumptions which are threatened by advances in quantum computing. Especially when it comes to key exchange protocols, the switch to quantum-resistant primitives has begun and aims to protect today's secrets against future developments, moving from common Diffie-Hellman-based solutions to...
We present a generic, yet simple and efficient transformation to obtain a forward secure authenticated key exchange protocol from a two-move passively secure unauthenticated key agreement scheme (such as standard Diffie--Hellman or Frodo or NewHope). Our construction requires only an IND-CCA public key encryption scheme (such as RSA-OAEP or a method based on ring-LWE), and a message authentication code. Particularly relevant in the context of the state-of-the-art of postquantum secu re...
Lattice-based cryptography is a highly potential candidate that protects against the threat of quantum attack. At Usenix Security 2016, Alkim, Ducas, Pöpplemann, and Schwabe proposed a post-quantum key exchange scheme called NewHope, based on a variant of lattice problem, the ring-learning-with-errors (RLWE) problem. In this work, we propose a high performance hardware architecture for NewHope. Our implementation requires 6,680 slices, 9,412 FFs, 18,756 LUTs, 8 DSPs and 14 BRAMs on Xilinx...
Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digital-signature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes. This paper introduces Kyber (part of CRYSTALS -- Cryptographic Suite for Algebraic Lattices -- a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of...
NewHope and NewHope-Simple are two recently proposed post-quantum key exchange protocols based on the hardness of the Ring-LWE problem. Due to their high security margins and performance, there have been already discussions and proposals for integrating them into Internet standards, like TLS, and anonymity network protocols, like Tor. In this work, we present time-constant and vector-optimized implementations of NewHope and NewHope-Simple for ARMv8-A 64-bit processors which target high-speed...
In this paper we introduce NewHope-Simple, a variant of the NewHope Ring-LWE-based key exchange that is using a straight-forward transformation from Ring-LWE encryption to a passively secure KEM (or key-exchange scheme). The main advantage of NewHopeLP-Simple over NewHope is simplicity. In particular, it avoids the error-reconciliation mechanism originally proposed by Ding. The explanation of his method, combined with other tricks, like unbiasing the key following Peikert's tweak and using...
Recently, Alkim, Ducas, Pöppelmann, and Schwabe proposed a Ring-LWE-based key exchange protocol called NewHope (Usenix Securitz 2016) and illustrated that this protocol is very efficient on large Intel processors. Their paper also claims that the parameter choice enables efficient implementation on small embedded processors. In this paper we show that these claims are actually correct and present NewHope software for the ARM Cortex-M family of 32-bit microcontrollers. More specifically, our...
Lattice-based cryptography offers some of the most attractive primitives believed to be resistant to quantum computers. Following increasing interest from both companies and government agencies in building quantum computers, a number of works have proposed instantiations of practical post-quantum key exchange protocols based on hard problems in ideal lattices, mainly based on the Ring Learning With Errors (R-LWE) problem. While ideal lattices facilitate major efficiency and storage benefits...