Skip to content

MigoXLab/dingo

 
 

Repository files navigation

Dingo AI Data Quality Evaluation Tool Logo

pre-commit PyPI version Python versions License GitHub stars GitHub forks GitHub issues MseeP.ai Security Assessment Badge Ask DeepWiki Trust Score

👋 join us on Discord and WeChat

If you like Dingo, please give us a ⭐ on GitHub!
Click Star

Introduction

Dingo is A Comprehensive AI Data, Model and Application Quality Evaluation Tool, designed for ML practitioners, data engineers, and AI researchers. It helps you systematically assess and improve the quality of training data, fine-tuning datasets, and production AI systems.

Why Dingo?

🎯 Production-Grade Quality Checks - From pre-training datasets to RAG systems, ensure your AI gets high-quality data

🗄️ Multi-Source Data Integration - Seamlessly connect to Local files, SQL databases (PostgreSQL/MySQL/SQLite), HuggingFace datasets, and S3 storage

🔍 Multi-Field Evaluation - Apply different quality rules to different fields in parallel (e.g., ISBN validation for isbn, text quality for title)

🤖 RAG System Assessment - Comprehensive evaluation of retrieval and generation quality with 5 academic-backed metrics

🧠 LLM & Rule Hybrid - Combine fast heuristic rules (30+ built-in) with LLM-based deep assessment

🚀 Flexible Execution - Run locally for rapid iteration or scale with Spark for billion-scale datasets

📊 Rich Reporting - Detailed quality reports with GUI visualization and field-level insights

Architecture Diagram

Architecture of dingo

Quick Start

Installation

pip install dingo-python

Example Use Cases of Dingo

1. Evaluate LLM chat data

from dingo.config.input_args import EvaluatorLLMArgs
from dingo.io.input import Data
from dingo.model.llm.text_quality.llm_text_quality_v4 import LLMTextQualityV4
from dingo.model.rule.rule_common import RuleEnterAndSpace

data = Data(
    data_id='123',
    prompt="hello, introduce the world",
    content="Hello! The world is a vast and diverse place, full of wonders, cultures, and incredible natural beauty."
)


def llm():
    LLMTextQualityV4.dynamic_config = EvaluatorLLMArgs(
        key='YOUR_API_KEY',
        api_url='https://api.openai.com/v1/chat/completions',
        model='gpt-4o',
    )
    res = LLMTextQualityV4.eval(data)
    print(res)


def rule():
    res = RuleEnterAndSpace().eval(data)
    print(res)

2. Evaluate Dataset

from dingo.config import InputArgs
from dingo.exec import Executor

# Evaluate a dataset from Hugging Face
input_data = {
    "input_path": "tatsu-lab/alpaca",  # Dataset from Hugging Face
    "dataset": {
        "source": "hugging_face",
        "format": "plaintext"  # Format: plaintext
    },
    "executor": {
        "result_save": {
            "bad": True  # Save evaluation results
        }
    },
    "evaluator": [
        {
            "evals": [
                {"name": "RuleColonEnd"},
                {"name": "RuleSpecialCharacter"}
            ]
        }
    ]
}

input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()
print(result)

Command Line Interface

Evaluate with Rule Sets

python -m dingo.run.cli --input test/env/local_plaintext.json

Evaluate with LLM (e.g., GPT-4o)

python -m dingo.run.cli --input test/env/local_json.json

GUI Visualization

After evaluation (with result_save.bad=True), a frontend page will be automatically generated. To manually start the frontend:

python -m dingo.run.vsl --input output_directory

Where output_directory contains the evaluation results with a summary.json file.

GUI output

Online Demo

Try Dingo on our online demo: (Hugging Face)🤗

Local Demo

Try Dingo in local:

cd app_gradio
python app.py

Gradio demo

Google Colab Demo

Experience Dingo interactively with Google Colab notebook: Open In Colab

MCP Server

Dingo includes an experimental Model Context Protocol (MCP) server. For details on running the server and integrating it with clients like Cursor, please see the dedicated documentation:

English · 简体中文 · 日本語

Video Demonstration

To help you get started quickly with Dingo MCP, we've created a video walkthrough:

mcp_demo.mp4

This video demonstrates step-by-step how to use Dingo MCP server with Cursor.

🎓 Key Concepts for Practitioners

What Makes Dingo Production-Ready?

1. Multi-Field Evaluation Pipeline

Apply different quality checks to different fields in a single pass:

"evaluator": [
    {"fields": {"content": "isbn"}, "evals": [{"name": "RuleIsbn"}]},
    {"fields": {"content": "title"}, "evals": [{"name": "RuleAbnormalChar"}]},
    {"fields": {"content": "description"}, "evals": [{"name": "LLMTextQualityV5"}]}
]

Why It Matters: Evaluate structured data (like database tables) without writing separate scripts for each field.

2. Stream Processing for Large Datasets

SQL datasources use SQLAlchemy's server-side cursors:

# Handles billions of rows without OOM
for data in dataset.get_data():  # Yields one row at a time
    result = evaluator.eval(data)

Why It Matters: Process production databases without exporting to intermediate files.

3. Field Isolation in Memory

RAG evaluations prevent context bleeding across different field combinations:

outputs/
├── user_input,response,retrieved_contexts/  # Faithfulness group
└── user_input,response/                     # Answer Relevancy group

Why It Matters: Accurate metric calculations when evaluating multiple field combinations.

4. Hybrid Rule-LLM Strategy

Combine fast rules (100% coverage) with sampled LLM checks (10% coverage):

"evals": [
    {"name": "RuleAbnormalChar"},        # Fast, runs on all data
    {"name": "LLMTextQualityV5"}         # Expensive, sample if needed
]

Why It Matters: Balance cost and coverage for production-scale evaluation.

5. Extensibility Through Registration

Clean plugin architecture for custom rules, prompts, and models:

@Model.rule_register('QUALITY_BAD_CUSTOM', ['default'])
class MyCustomRule(BaseRule):
    @classmethod
    def eval(cls, input_data: Data) -> EvalDetail:
        # Example: check if content is empty
        if not input_data.content:
            return EvalDetail(
                metric=cls.__name__,
                status=True,  # Found an issue
                label=[f'{cls.metric_type}.{cls.__name__}'],
                reason=["Content is empty"]
            )
        return EvalDetail(
            metric=cls.__name__,
            status=False,  # No issue found
            label=['QUALITY_GOOD']
        )

Why It Matters: Adapt to domain-specific requirements without forking the codebase.


📚 Data Quality Metrics

Dingo provides 70+ evaluation metrics across multiple dimensions, combining rule-based speed with LLM-based depth.

Metric Categories

Category Examples Use Case
Pretrain Text Quality Completeness, Effectiveness, Similarity, Security LLM pre-training data filtering
SFT Data Quality Honest, Helpful, Harmless (3H) Instruction fine-tuning data
RAG Evaluation Faithfulness, Context Precision, Answer Relevancy RAG system assessment
Hallucination Detection HHEM-2.1-Open, Factuality Check Production AI reliability
Classification Topic categorization, Content labeling Data organization
Multimodal Image-text relevance, VLM quality Vision-language data
Security PII detection, Perspective API toxicity Privacy and safety

📊 View Complete Metrics Documentation →
📖 RAG Evaluation Guide → | 中文版
🔍 Hallucination Detection Guide → | 中文版
Factuality Assessment Guide → | 中文版

Most metrics are backed by academic research to ensure scientific rigor.

Quick Metric Usage

llm_config = {
    "model": "gpt-4o",
    "key": "YOUR_API_KEY",
    "api_url": "https://api.openai.com/v1/chat/completions"
}

input_data = {
    "evaluator": [
        {
            "fields": {"content": "content"},
            "evals": [
                {"name": "RuleAbnormalChar"},           # Rule-based (fast)
                {"name": "LLMTextQualityV5", "config": llm_config}  # LLM-based (deep)
            ]
        }
    ]
}

Customization: All prompts are defined in dingo/model/llm/ directory (organized by category: text_quality/, rag/, hhh/, etc.). Extend or modify them for domain-specific requirements.

🌟 Feature Highlights

📊 Multi-Source Data Integration

Diverse Data Sources - Connect to where your data lives
Local Files: JSONL, CSV, TXT, Parquet
SQL Databases: PostgreSQL, MySQL, SQLite, Oracle, SQL Server (with stream processing)
Cloud Storage: S3 and S3-compatible storage
ML Platforms: Direct HuggingFace datasets integration

Enterprise-Ready SQL Support - Production database integration
✅ Memory-efficient streaming for billion-scale datasets
✅ Connection pooling and automatic resource cleanup
✅ Complex SQL queries (JOIN, WHERE, aggregations)
✅ Multiple dialect support with SQLAlchemy

Multi-Field Quality Checks - Different rules for different fields
✅ Parallel evaluation pipelines (e.g., ISBN validation + text quality simultaneously)
✅ Field aliasing and nested field extraction (user.profile.name)
✅ Independent result reports per field
✅ ETL pipeline architecture for flexible data transformation


🤖 RAG System Evaluation

5 Academic-Backed Metrics - Based on RAGAS, DeepEval, TruLens research
Faithfulness: Answer-context consistency (hallucination detection)
Answer Relevancy: Answer-query alignment
Context Precision: Retrieval precision
Context Recall: Retrieval recall
Context Relevancy: Context-query relevance

Comprehensive Reporting - Auto-aggregated statistics
✅ Average, min, max, standard deviation for each metric
✅ Field-grouped results
✅ Batch and single evaluation modes

📖 View RAG Evaluation Guide →


🧠 Hybrid Evaluation System

Rule-Based - Fast, deterministic, cost-effective
✅ 30+ built-in rules (text quality, format, PII detection)
✅ Regex, heuristics, statistical checks
✅ Custom rule registration

LLM-Based - Deep semantic understanding
✅ OpenAI (GPT-4o, GPT-3.5), DeepSeek, Kimi
✅ Local models (Llama3, Qwen)
✅ Vision-Language Models (InternVL, Gemini)
✅ Custom prompt registration

Extensible Architecture
✅ Plugin-based rule/prompt/model registration
✅ Clean separation of concerns (agents, tools, orchestration)
✅ Domain-specific customization


🚀 Flexible Execution & Integration

Multiple Interfaces
✅ CLI for quick checks
✅ Python SDK for integration
✅ MCP (Model Context Protocol) server for IDEs (Cursor, etc.)

Scalable Execution
✅ Local executor for rapid iteration
✅ Spark executor for distributed processing
✅ Configurable concurrency and batching

Data Sources
Local Files: JSONL, CSV, TXT, Parquet formats
Hugging Face: Direct integration with HF datasets hub
S3 Storage: AWS S3 and S3-compatible storage
SQL Databases: PostgreSQL, MySQL, SQLite, Oracle, SQL Server (stream processing for large-scale data)

Modalities
✅ Text (chat, documents, code)
✅ Images (with VLM support)
✅ Multimodal (text + image consistency)


📈 Rich Reporting & Visualization

Multi-Level Reports
✅ Summary JSON with overall scores
✅ Field-level breakdown
✅ Per-rule violation details
✅ Type and name distribution

GUI Visualization
✅ Built-in web interface
✅ Interactive data exploration
✅ Anomaly tracking

Metric Aggregation
✅ Automatic statistics (avg, min, max, std_dev)
✅ Field-grouped metrics
✅ Overall quality score


📖 User Guide

🔧 Extensibility

Dingo uses a clean plugin architecture for domain-specific customization:

Custom Rule Registration

from dingo.model import Model
from dingo.model.rule.base import BaseRule
from dingo.io import Data
from dingo.io.output.eval_detail import EvalDetail

@Model.rule_register('QUALITY_BAD_CUSTOM', ['default'])
class DomainSpecificRule(BaseRule):
    """Check domain-specific patterns"""

    @classmethod
    def eval(cls, input_data: Data) -> EvalDetail:
        text = input_data.content

        # Your custom logic
        is_valid = your_validation_logic(text)

        return EvalDetail(
            metric=cls.__name__,
            status=not is_valid,  # False = good, True = bad
            label=['QUALITY_GOOD' if is_valid else 'QUALITY_BAD_CUSTOM'],
            reason=["Validation details..."]
        )

Custom LLM/Prompt Registration

from dingo.model import Model
from dingo.model.llm.base_openai import BaseOpenAI

@Model.llm_register('custom_evaluator')
class CustomEvaluator(BaseOpenAI):
    """Custom LLM evaluator with specialized prompts"""

    _metric_info = {
        "metric_name": "CustomEvaluator",
        "metric_type": "LLM-Based Quality",
        "category": "Custom Category"
    }

    prompt = """Your custom prompt here..."""

Examples:

⚙️ Execution Modes

Local Executor (Development & Small-Scale)

from dingo.config import InputArgs
from dingo.exec import Executor

input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
result = executor.execute()

# Access results
summary = executor.get_summary()           # Overall metrics
bad_data = executor.get_bad_info_list()    # Quality issues
good_data = executor.get_good_info_list()  # High-quality data

Best For: Rapid iteration, debugging, datasets < 100K rows

Spark Executor (Production & Large-Scale)

from pyspark.sql import SparkSession
from dingo.exec import Executor

spark = SparkSession.builder.appName("Dingo").getOrCreate()
spark_rdd = spark.sparkContext.parallelize(your_data)

executor = Executor.exec_map["spark"](
    input_args,
    spark_session=spark,
    spark_rdd=spark_rdd
)
result = executor.execute()

Best For: Production pipelines, distributed processing, datasets > 1M rows

Evaluation Reports

After evaluation, Dingo generates:

  1. Summary Report (summary.json): Overall metrics and scores
  2. Detailed Reports: Specific issues for each rule violation

Report Description:

  1. score: num_good / total
  2. type_ratio: The count of type / total, such as: QUALITY_BAD_COMPLETENESS / total

Example summary:

{
    "task_id": "d6c922ec-981c-11ef-b723-7c10c9512fac",
    "task_name": "dingo",
    "eval_group": "default",
    "input_path": "test/data/test_local_jsonl.jsonl",
    "output_path": "outputs/d6c921ac-981c-11ef-b723-7c10c9512fac",
    "create_time": "20241101_144510",
    "score": 50.0,
    "num_good": 1,
    "num_bad": 1,
    "total": 2,
    "type_ratio": {
        "content": {
            "QUALITY_BAD_COMPLETENESS.RuleColonEnd": 0.5,
            "QUALITY_BAD_RELEVANCE.RuleSpecialCharacter": 0.5
        }
    }
}

🚀 Roadmap & Contributions

Future Plans

  • Agent-as-a-Judge - Multi-agent debate patterns for bias reduction and complex reasoning
  • SaaS Platform - Hosted evaluation service with API access and dashboard
  • Audio & Video Modalities - Extend beyond text/image
  • Diversity Metrics - Statistical diversity assessment
  • Real-time Monitoring - Continuous quality checks in production pipelines

Limitations

The current built-in detection rules and model methods primarily focus on common data quality issues. For special evaluation needs, we recommend customizing detection rules.

Acknowledgments

Contribution

We appreciate all the contributors for their efforts to improve and enhance Dingo. Please refer to the Contribution Guide for guidance on contributing to the project.

License

This project uses the Apache 2.0 Open Source License.

This project uses fasttext for some functionality including language detection. fasttext is licensed under the MIT License, which is compatible with our Apache 2.0 license and provides flexibility for various usage scenarios.

Citation

If you find this project useful, please consider citing our tool:

@misc{dingo,
  title={Dingo: A Comprehensive AI Data Quality Evaluation Tool for Large Models},
  author={Dingo Contributors},
  howpublished={\url{https://github.com/MigoXLab/dingo}},
  year={2024}
}