Skip to content

OVECJOE/llmrelic

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLM Relic

A lightweight Python library that provides easy access to popular LLM model names and allows you to define which models your application supports.

Why LLM Relic?

  • No more hardcoded model names: Access standardized model names from major providers
  • Easy support definition: Fluent interface to define which models your app supports
  • Model metadata: Context windows, capabilities, pricing tiers, and status for all models
  • Smart model search: Find models by capabilities, context size, or pricing tier
  • Validation: Built-in validation to ensure only supported models are used
  • Zero dependencies: Lightweight library with no external dependencies
  • Type hints: Full type hint support for better IDE experience

Installation

pip install llmrelic

Quick Start

Access Model Names

from llmrelic import OpenAI, Anthropic, Google

# Access model names directly
print(OpenAI.gpt_4)  # "gpt-4"
print(Anthropic.claude_3_opus)  # "claude-3-opus-20240229"
print(Google.gemini_pro)  # "gemini-pro"

# List all models from a provider
print(OpenAI.list_models())

Define Supported Models

from llmrelic import SupportedModels

# Define which models your app supports
supported = (SupportedModels.create()
             .openai()  # All OpenAI models
             .anthropic(["claude-3-opus-20240229", "claude-3-sonnet-20240229"])  # Specific models
             .google()  # All Google models
             .custom(["my-custom-model"])  # Your custom models
             .build())

# Validate model support
if supported.is_supported("gpt-4"):
    print("GPT-4 is supported!")

# Get all supported models
print(supported.get_supported_models())

Use in Your Application

from llmrelic import OpenAI, SupportedModels

class MyLLMApp:
    def __init__(self):
        # Define what models your app supports
        self.supported_models = (SupportedModels.create()
                                .openai(["gpt-4", "gpt-3.5-turbo"])
                                .anthropic()
                                .build())
    
    def chat(self, model_name: str, message: str):
        if not self.supported_models.is_supported(model_name):
            available = ", ".join(self.supported_models.get_supported_models())
            raise ValueError(f"Model {model_name} not supported. Available: {available}")
        
        # Your chat logic here
        return f"Response from {model_name}"

# Usage
app = MyLLMApp()
app.chat(OpenAI.gpt_4, "Hello!")  # Works
app.chat("gpt-4", "Hello!")  # Works
# app.chat("unsupported-model", "Hello!")  # Raises ValueError

Supported Providers

  • OpenAI: GPT-4, GPT-3.5-turbo, and more
  • Anthropic: Claude 3 Opus, Sonnet, Haiku, and more
  • Google: Gemini Pro, Bard, PaLM-2, and more
  • Cohere: Command, Command-Light, Command-R, and more
  • Mistral: Mistral 7B, Mixtral 8x7B, and more
  • Meta: Llama 2, Code Llama, and more
  • Hugging Face: Popular open-source models
  • Moonshot: moonshot-v1-8k, moonshot-v1-32k, moonshot-v1-128k, moonshot-v1-auto, and vision preview variants

API Reference

Model Providers

Each provider exposes models as attributes:

from llmrelic import OpenAI, Anthropic, Google, Cohere, Mistral, Meta, Huggingface

# Access models
OpenAI.gpt_4  # "gpt-4"
Anthropic.claude_3_opus  # "claude-3-opus-20240229"
Google.gemini_pro  # "gemini-pro"

# List all models
OpenAI.list_models()

# Check if model exists
"gpt-4" in OpenAI  # True

SupportedModels (Fluent Interface)

from llmrelic import SupportedModels

supported = (SupportedModels.create()
             .openai()  # All OpenAI models
             .openai(["gpt-4", "gpt-3.5-turbo"])  # Specific OpenAI models
             .anthropic()  # All Anthropic models
             .google(["gemini-pro"])  # Specific Google models
             .custom(["my-model"])  # Custom models
             .build())

# Check support
supported.is_supported("gpt-4")  # True

# Get models
supported.get_models()  # List of all supported models

ModelRegistry (Direct Interface)

from llmrelic import ModelRegistry

registry = ModelRegistry()
registry.add_provider("openai")
registry.add_models(["custom-model-1", "custom-model-2"])
registry.add_model("another-model")

# Check support
registry.is_supported("gpt-4")  # True
"gpt-4" in registry  # True

# Get models
registry.get_supported_models()
registry.get_supported_by_provider()

# Iterate
for model in registry:
    print(model)

Utility Functions

from llmrelic import get_all_models, find_model

# Get all available models by provider
all_models = get_all_models()

# Find which provider a model belongs to
provider = find_model("gpt-4")  # "openai"

Model Metadata

Access detailed information about any model:

from llmrelic import get_metadata, OpenAI

# Get metadata for a specific model
metadata = get_metadata("gpt-4-turbo")
print(metadata.context_window)  # 128000
print(metadata.supports_vision)  # True
print(metadata.pricing_tier)  # PricingTier.PREMIUM
print(metadata.status)  # ModelStatus.ACTIVE

# Access via provider
metadata = OpenAI.get_metadata("gpt-4")
all_openai_metadata = OpenAI.list_metadata()

# Check capabilities
if metadata.supports_function_calling:
    print("Function calling supported!")

if metadata.has_min_context(100000):
    print("Large context window available!")

if not metadata.is_deprecated():
    print("Model is still active!")

ModelMetadata Properties

Property Type Description
name str Model name
provider str Provider name
context_window int Maximum context size in tokens
max_output_tokens int | None Maximum output tokens
training_cutoff str | None Training data cutoff date
pricing_tier PricingTier BUDGET, STANDARD, or PREMIUM
status ModelStatus ACTIVE, DEPRECATED, BETA, or PREVIEW
capabilities ModelCapabilities Capability flags

ModelCapabilities Flags

Flag Description
supports_vision Accepts image inputs
supports_audio Accepts audio inputs
supports_video Accepts video inputs
supports_function_calling Supports function/tool calling
supports_json_mode Supports structured JSON output
supports_streaming Supports streaming responses
supports_system_message Supports system messages

Finding Models

Search for models by capabilities and requirements:

from llmrelic import find_models, ModelFinder, PricingTier, ModelStatus

# Simple function-based search
models = find_models(
    min_context=100000,
    supports_vision=True,
    pricing_tier=PricingTier.BUDGET
)

for model in models:
    print(f"{model.name}: {model.context_window} tokens")

# Using ModelFinder for more options
finder = ModelFinder()

# Find all vision-capable models
vision_models = finder.find_with_vision()

# Find budget models with large context
budget_large = finder.find_budget_with_large_context(min_context=32000)

# Find models by provider
openai_models = finder.find_by_provider("openai", "anthropic")

# Find all active models
active_models = finder.find_active()

# Find multimodal models (vision, audio, etc.)
multimodal = finder.find_multimodal()

# Find by pricing tier
cheap_models = finder.find_by_pricing(PricingTier.BUDGET)

Real-World Examples

from llmrelic import find_models, get_metadata, PricingTier, ModelStatus

# Find the cheapest model that supports vision
budget_vision = find_models(
    supports_vision=True,
    pricing_tier=PricingTier.BUDGET,
    status=ModelStatus.ACTIVE
)

# Find models suitable for processing long documents
long_context = find_models(min_context=100000, status=ModelStatus.ACTIVE)

# Validate a model before using it
def validate_model(model_name: str, needs_vision: bool = False):
    metadata = get_metadata(model_name)
    if metadata is None:
        raise ValueError(f"Unknown model: {model_name}")
    if metadata.is_deprecated():
        raise ValueError(f"Model {model_name} is deprecated")
    if needs_vision and not metadata.supports_vision:
        raise ValueError(f"Model {model_name} doesn't support vision")
    return metadata

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Add your changes
  4. Run tests: pytest
  5. Submit a pull request

License

MIT License

About

Access popular LLM model names very easily and declare what models your application supports.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages