-
Dalian University of Technology
- China
-
07:07
(UTC +08:00) - https://en.dlut.edu.cn/
Stars
Labs for MIT 6.S184/6.S975, IAP 2025
From search engines, to science, to robotics, this reposity is meant to showcase the use of reinforcement learning in the world..
强化学习中文教程(蘑菇书🍄),在线阅读地址:https://datawhalechina.github.io/easy-rl/
这是我的个人Latex模板,将会收录自己整理的关于作业、笔记、比赛、以及各种论文的Latex模板。同时会基于中国人民大学统计学院的学术规范,给出学校的论文和beamer模板。
PyTorch code to run synthetic experiments.
This is the code for the paper Bayesian Invariant Risk Minmization of CVPR 2022.
Implementation of Invariant Risk Minimization https://arxiv.org/abs/1907.02893
DomainBed is a suite to test domain generalization algorithms
Degrees of Lewdity 游戏的授权中文社区本地化版本
CardIO is a library for data science research of heart signals
(ICLR 2022) Discovering Invariant Rationales for Graph Neural Networks
[NeurIPS 2023] Does Invariant Graph Learning via Environment Augmentation Learn Invariance?
[NeurIPS 2022] Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs
Benchmark datasets, data loaders, and evaluators for graph machine learning
斯坦福 CS224W(2023 Winter)的中文笔记、作业与Colab | Chinese notes, homwork and colabs of Stanford CS224W (2023 Winter)
A high-throughput and memory-efficient inference and serving engine for LLMs
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Code for "Neural causal learning from unknown interventions"
An easy/swift-to-adapt PyTorch-Lighting template. 套壳模板,简单易用,稍改原来Pytorch代码,即可适配Lightning。You can translate your previous Pytorch code much easier using this template, and keep your freedom to edit a…
python implementation of Peng Ding's "First Course in Causal Inference"
Four commonly used operations on the symmetric positive definite manifold
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)
✨新版大连理工Beamer主题 ✨一份简约现代的beamer模板 / PPT杀手 / 学术范入门
tensorflow实战练习,包括强化学习、推荐系统、nlp等
Quasi-Oracle Estimation of Heterogeneous Treatment Effects