Skip to content

DeadmanXXXII/t-ket

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

t-ket

Cambridge University quantum CLI

t|ket Overview

t|ket˙ (pronounced "ticket") is a leading quantum software development platform that optimizes quantum circuits for various quantum hardware platforms. The following guide provides a detailed list of commands, usage examples, and advanced techniques for working with t|ket˙.

1. Installation

To use t|ket˙, you need to install the pytket package.

# Install pytket
pip install pytket

To enable support for specific quantum backends, you might need to install additional packages. For example:

# Install IBMQ backend
pip install pytket-extensions[pytket-ibmq]

# Install AQT backend
pip install pytket-extensions[pytket-aqt]

# Install Amazon Braket backend
pip install pytket-extensions[pytket-braket]

2. Creating and Managing Quantum Circuits

  • Basic Circuit Creation

Create a simple quantum circuit.

from pytket import Circuit
from pytket.circuit.display import render_circuit_jupyter

# Initialize a circuit with 2 qubits and 2 classical bits
circuit = Circuit(2, 2)
circuit.H(0).CX(0, 1).measure_all()

# Render the circuit
render_circuit_jupyter(circuit)
  • Adding Gates to the Circuit

Add various quantum gates to the circuit.

circuit = Circuit(2, 2)
circuit.X(0).H(1).CX(0, 1).Rz(0.5, 0).Ry(1.0, 1).Rz(1.5, 0).measure_all()
render_circuit_jupyter(circuit)

3. Optimizing Quantum Circuits

  • Basic Optimization

Optimize a quantum circuit to reduce gate count and improve execution.

from pytket.passes import SequencePass, FullPeepholeOptimise, RemoveRedundancies

# Define an optimization pass sequence
optimization_pass = SequencePass([FullPeepholeOptimise(), RemoveRedundancies()])

# Apply the optimization to the circuit
optimized_circuit = circuit.copy()
optimization_pass.apply(optimized_circuit)

# Compare original and optimized circuits
print("Original circuit:")
render_circuit_jupyter(circuit)

print("Optimized circuit:")
render_circuit_jupyter(optimized_circuit)
  • Advanced Optimization Techniques

Use advanced techniques to optimize for specific backends.

from pytket.passes import CXMappingPass, RoutingPass

# Define a mapping pass for a specific architecture
mapping_pass = CXMappingPass(target_device)

# Apply routing and mapping passes to the circuit
advanced_optimization_pass = SequencePass([mapping_pass, RoutingPass()])
advanced_optimization_pass.apply(optimized_circuit)

print("Circuit after advanced optimization:")
render_circuit_jupyter(optimized_circuit)

4. Executing Quantum Circuits on Different Backends

  • IBM Quantum Experience

Execute a circuit on IBMQ backend.

from pytket.extensions.qiskit import AerBackend, IBMQBackend
from qiskit import IBMQ

# Load IBMQ account
IBMQ.load_account()

# Initialize IBMQ backend
ibmq_backend = IBMQBackend("ibmq_qasm_simulator")

# Compile and execute the circuit
compiled_circuit = ibmq_backend.get_compiled_circuit(circuit)
result = ibmq_backend.run(compiled_circuit)

# Print result
print(result.get_counts())
  • Amazon Braket

Execute a circuit on Amazon Braket backend.

from pytket.extensions.braket import BraketBackend
from braket.aws import AwsDevice

# Initialize Amazon Braket backend
braket_backend = BraketBackend(AwsDevice("arn:aws:braket:::device/qpu/ionq/ionQdevice"))

# Compile and execute the circuit
compiled_circuit = braket_backend.get_compiled_circuit(circuit)
result = braket_backend.run(compiled_circuit)

# Print result
print(result.get_counts())
  • Rigetti

Execute a circuit on Rigetti backend.

from pytket.extensions.pyquil import ForestBackend

# Initialize Rigetti backend
forest_backend = ForestBackend()

# Compile and execute the circuit
compiled_circuit = forest_backend.get_compiled_circuit(circuit)
result = forest_backend.run(compiled_circuit)

# Print result
print(result.get_counts())

5. Error Mitigation and Noise Simulation

  • Error Mitigation Techniques

Apply error mitigation techniques in your quantum experiments.

from pytket.passes import NoiseAwarePlacementPass

# Define a noise-aware placement pass
noise_mitigation_pass = NoiseAwarePlacementPass()

# Apply the noise mitigation pass to the circuit
noise_mitigation_pass.apply(compiled_circuit)

print("Circuit after noise mitigation:")
render_circuit_jupyter(compiled_circuit)
  • Simulating Noise

Simulate noise in your quantum circuits.

from pytket.extensions.qiskit import AerBackend

# Initialize Aer backend with noise model
aer_backend = AerBackend(noise_model="ibmq_vigo_noise_model")

# Compile and execute the circuit with noise simulation
compiled_circuit = aer_backend.get_compiled_circuit(circuit)
result = aer_backend.run(compiled_circuit)

# Print result
print(result.get_counts())

6. Hybrid Algorithms and Optimization

  • Variational Quantum Eigensolver (VQE)

Implement the VQE algorithm using t|ket˙.

import numpy as np
from scipy.optimize import minimize
from pytket import Circuit
from pytket.extensions.qiskit import AerBackend

# Define the ansatz
def ansatz(params):
    circuit = Circuit(2)
    circuit.Ry(params[0], 0)
    circuit.Ry(params[1], 1)
    circuit.CX(0, 1)
    return circuit

# Define the cost function
def cost_function(params):
    backend = AerBackend()
    circuit = ansatz(params)
    circuit.measure_all()
    compiled_circuit = backend.get_compiled_circuit(circuit)
    result = backend.run(compiled_circuit)
    counts = result.get_counts()
    cost = counts.get("00", 0) / sum(counts.values())
    return cost

# Optimize the parameters
initial_params = np.random.rand(2)
result = minimize(cost_function, initial_params, method="Nelder-Mead")
print(result.x)

7. Integration with Classical Computing

  • Storing and Retrieving Results

Store quantum task results and retrieve them later.

import json

# Store results to a file
with open("results.json", "w") as f:
    json.dump(result.get_counts(), f)

# Retrieve results from a file
with open("results.json", "r") as f:
    loaded_counts = json.load(f)

print(loaded_counts)
  • Hybrid Classical-Quantum Workflows

Combine classical and quantum computing in hybrid workflows.

def hybrid_workflow(classical_data):
    # Perform classical pre-processing
    processed_data = classical_data * 2
    
    # Create and execute a quantum circuit
    circuit = Circuit(2)
    circuit.Ry(processed_data[0], 0)
    circuit.Ry(processed_data[1], 1)
    circuit.CX(0, 1)
    circuit.measure_all()
    
    # Execute the circuit on a quantum backend
    backend = AerBackend()
    compiled_circuit = backend.get_compiled_circuit(circuit)
    result = backend.run(compiled_circuit)
    
    # Perform classical post-processing
    counts = result.get_counts()
    processed_counts = {key: value / sum(counts.values()) for key, value in counts.items()}
    
    return processed_counts

# Example classical data
classical_data = [0.5, 0.8]

# Run the hybrid workflow
result = hybrid_workflow(classical_data)
print(result)

Conclusion

This comprehensive guide covers the installation, basic usage, advanced techniques, optimization, integration with classical computing, error mitigation, and hybrid algorithms for t|ket˙. These examples provide a thorough resource for getting started and advancing in quantum computing with t|ket˙.

About

Cambridge University quantum CLI

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published