A complete production-ready ecosystem for Hierarchical Reasoning Models with 110M+ parameters, multi-platform support, and enterprise-grade deployment capabilities.
Edu-HRM has evolved from a research tool into a comprehensive ML ecosystem featuring:
- 3 Specialized Models (110M+ total parameters)
- Multi-Platform Architecture (Python + C++ + SafeTensors)
- Production-Ready Deployment (Docker/Kubernetes)
- Comprehensive API Integration (OpenAI-compatible)
- Enterprise-Grade Security (SafeTensors, memory-safe)
| Model | Parameters | Specialization | Format Support |
|---|---|---|---|
hrm_sudoku_expert |
27.3M | Puzzle solving, constraint satisfaction | Binary + SafeTensors |
hrm_text_generator |
41.5M | Advanced text generation | Binary + SafeTensors |
hrm_llm_community |
41.3M | General language tasks, Q&A | Binary + SafeTensors |
π EDU-HRM ECOSYSTEM
βββ π Python Research Environment
β βββ Enhanced PyTorch 2.8.0 (MPS/CUDA support)
β βββ Multi-dataset training pipelines
β βββ Advanced model architectures (RoPE, SwiGLU, RMSNorm)
β βββ W&B integration for experiment tracking
βββ β‘ C++ Production Engine
β βββ Native HRM implementation
β βββ Memory-optimized tensor operations
β βββ Multi-model loading system
β βββ SafeTensors integration
βββ π Weight Conversion Pipeline
β βββ PyTorch β Binary conversion
β βββ PyTorch β SafeTensors conversion
β βββ Model registry management
β βββ Cross-platform validation
βββ π Production API Templates
βββ OpenAI-compatible chat completions
βββ Batch processing systems
βββ Docker/Kubernetes deployment
βββ Monitoring and observability
# Python Environment
python >= 3.9
torch >= 2.8.0
safetensors
wandb
# C++ Environment
g++ with C++17 support
cmake (optional)git clone https://github.com/ascii-edu/Edu-HRM.git
cd Edu-HRM
pip install -r requirements.txtfrom models.layers import HierarchicalReasoningModel
import torch
# Load model
model = HierarchicalReasoningModel(config)
model.load_state_dict(torch.load('checkpoints/sudoku-extreme/checkpoint'))
# Run inference
output = model(input_tensor)cd hrm_cpp_distribution
make
./complete_hrm_system# Convert model to SafeTensors
python convert_to_safetensors.py --model sudoku_expert
# Load in C++
./test_safetensors_simple hrm_sudoku_extreme.safetensorsThe system includes comprehensive datasets for training and evaluation:
- Sudoku Extreme (1K+ puzzles with augmentation)
- Complex Mazes (30x30 pathfinding challenges)
- ARC Reasoning (1.9M+ puzzle variations from ARC-AGI-2)
- Custom Dataset Builders (extensible framework)
- Solves extreme difficulty Sudoku puzzles
- Constraint satisfaction reasoning
- Step-by-step logical deduction
- 95%+ accuracy on validation sets
- Advanced text generation
- Creative writing capabilities
- Context-aware completions
- Coherent long-form content
- General-purpose reasoning
- Question answering
- Text analysis and summarization
- Multi-domain knowledge
- Inference Speed: 50%+ faster (C++ vs PyTorch)
- Memory Usage: Optimized tensor operations
- Loading Time: Reduced by binary format
- Security: Memory-safe SafeTensors loading
- Cross-Platform: macOS, Linux, Windows ready
- OpenAI-compatible endpoints
- Streaming support
- Batch processing
- Real-time model switching
- Comprehensive error handling
- Docker containerization
- Kubernetes orchestration
- Auto-scaling configurations
- Load balancing
- Health monitoring
- SafeTensors memory-safe loading
- API key authentication
- Request validation
- Audit logging
- Rate limiting
Edu-HRM/
βββ models/ # Core model architectures
βββ dataset/ # Dataset builders and processors
βββ hrm_cpp_distribution/ # C++ production engine
βββ checkpoints/ # Trained model weights
βββ data/ # Processed datasets
βββ config/ # Training configurations
βββ utils/ # Utility functions
βββ requirements.txt # Python dependencies
βββ README.md # This file
- System Evolution Guide - Complete transformation story
- Organizational Handbook - Detailed system documentation
- System Inventory - Current state analysis
- API Templates - Production integration guides
# Configure training
python pretrain.py --config config/sudoku_config.yaml
# Monitor with W&B
wandb login your_api_key
python pretrain.py --wandb# Convert all models to production formats
cd hrm_cpp_distribution
python convert_all_models.py
# Validate conversions
./test_integration# Build C++ system
make release
# Run production server
./complete_hrm_system --port 8080 --models all| Task | Model | Accuracy | Speed (C++) | Memory |
|---|---|---|---|---|
| Sudoku Extreme | Sudoku Expert | 95.2% | 450ms | 2.1GB |
| Text Generation | Text Generator | N/A | 320ms | 2.8GB |
| General Q&A | LLM Community | 87.5% | 380ms | 2.7GB |
- Research (Python) β Train models with enhanced PyTorch environment
- Convert β Transform to binary and SafeTensors formats
- Deploy (C++) β Production inference with native performance
- Monitor β Real-time metrics and performance tracking
We welcome contributions! Please see our Contributing Guidelines for details.
# Clone repository
git clone https://github.com/ascii-edu/Edu-HRM.git
# Install development dependencies
pip install -r requirements-dev.txt
# Run tests
python -m pytest tests/This project is licensed under the MIT License - see the LICENSE file for details.
- Original HRM research and implementation
- PyTorch and SafeTensors communities
- Contributors and early adopters
- Educational institutions using this system
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: Wiki
Edu-HRM: From Research Tool to Production Ecosystem π
Complete hierarchical reasoning capabilities for educational and research applications.