Skip to content

Flecart/schemez

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Schemez

PyPI License Package status Monthly downloads Distribution format Wheel availability Python version Implementation Releases Github Contributors Github Discussions Github Forks Github Issues Github Issues Github Watchers Github Stars Github Repository size Github last commit Github release date Github language count Github commits this month Package status PyUp

Read the documentation!

A powerful toolkit for Python function schema generation and code generation. Extract schemas from functions, generate OpenAI-compatible tools, create HTTP clients, and set up FastAPI routes - all from your function signatures.

Installation

pip install schemez

Quick Start

from schemez import create_schema

def get_weather(location: str, unit: str = "C") -> dict:
    """Get weather for a location."""
    return {"temp": 22, "location": location}

# Create schema from function
schema = create_schema(get_weather)
print(schema.name)          # "get_weather"
print(schema.description)   # "Get weather for a location."
print(schema.parameters)    # Full parameter schema

FunctionSchema - The Core

The FunctionSchema class is the heart of schemez, providing a rich representation of Python functions with powerful methods for introspection and code generation.

Schema Creation

from schemez import create_schema
from typing import Literal

def search_users(
    query: str,
    limit: int = 10,
    status: Literal["active", "inactive"] = "active",
    include_details: bool = False
) -> list[dict]:
    """Search for users with filters.
    
    Args:
        query: Search query string
        limit: Maximum number of results
        status: User status filter
        include_details: Include detailed user information
    """
    return []

# Create schema
schema = create_schema(search_users)

Key Methods

schema output

# Get OpenAI-compatible tool definition
openai_tool = schema.model_dump_openai()
# Returns: {"type": "function", "function": {...}}

Code Generation

# Generate Python function signature
signature = schema.to_python_signature()
# Returns: "(*, query: str, limit: int = 10, status: Literal['active', 'inactive'] = 'active', include_details: bool = False) -> list[dict]"

# Generate Pydantic model for return type
model_code = schema.to_pydantic_model_code("SearchResponse")
# Returns Python code string for a Pydantic model

Schema Inspection

# Access schema components
print(schema.name)                    # Function name
print(schema.description)             # Function docstring
print(schema.parameters)              # Parameter schema dict
print(schema.returns)                 # Return type schema
print(schema.get_annotations())       # Python type annotations

Bulk Schema Generation

from schemez.functionschema import (
    create_schemas_from_module,
    create_schemas_from_class,
    create_schemas_from_callables
)

# From module
import math
schemas = create_schemas_from_module(math, include_functions=['sin', 'cos'])

# From class
class Calculator:
    def add(self, x: int, y: int) -> int:
        """Add two numbers."""
        return x + y
    
    def multiply(self, x: int, y: int) -> int:
        """Multiply two numbers."""
        return x * y

schemas = create_schemas_from_class(Calculator)

# From callable list
functions = [get_weather, search_users]
schemas = create_schemas_from_callables({"weather": get_weather, "search": search_users})

Code Generation - Powerful Automation

Transform your schemas into executable code for different contexts: HTTP clients, FastAPI routes, and Python execution environments.

HTTP Client Generation

Generate complete HTTP client code from schemas:

from schemez.code_generation import ToolsetCodeGenerator

# Create from functions
functions = [get_weather, search_users]
generator = ToolsetCodeGenerator.from_callables(functions)

# Generate HTTP client code (multiple modes available)
client_code = generator.generate_code(
    mode="models",  # Rich Pydantic models for validation
    base_url="https://api.example.com",
    path_prefix="/v1/tools"
)

# Available modes:
# - "models": Rich Pydantic models with validation
# - "simple": Clean natural function signatures  
# - "stubs": Function stubs for LLM consumption

# Generated code includes:
# - Pydantic input models for each function
# - Async HTTP wrapper functions
# - Type-safe parameter validation
# - Complete module with imports and exports

Example generated client:

"""Generated HTTP client tools."""

from __future__ import annotations
from pydantic import BaseModel
import httpx

class GetWeatherInput(BaseModel):
    location: str
    unit: str | None = 'C'

async def get_weather(input: GetWeatherInput) -> str:
    """Get weather for a location."""
    async with httpx.AsyncClient() as client:
        response = await client.get(
            "https://api.example.com/v1/tools/get_weather",
            params=input.model_dump(),
            timeout=30.0
        )
        response.raise_for_status()
        return response.text

__all__ = ['GetWeatherInput', 'get_weather', ...]

FastAPI Route Setup

Automatically create FastAPI routes from your functions:

from fastapi import FastAPI
from schemez.code_generation import ToolsetCodeGenerator

app = FastAPI()

# Create generator with actual callables for execution
generator = ToolsetCodeGenerator.from_callables([get_weather, search_users])

# Add all routes automatically
generator.add_all_routes(app, path_prefix="/api/tools")

# Creates routes:
# GET /api/tools/get_weather
# GET /api/tools/search_users

Python Execution Environment

Create sandboxed execution environments with tool functions:

# Generate different modes of client code
models_code = generator.generate_code(mode="models")    # With Pydantic models
simple_code = generator.generate_code(mode="simple")    # Clean signatures
stubs_code = generator.generate_code(mode="stubs")      # For LLM consumption

# For advanced use, get structured components
structured = generator.generate_structured_code()
print(structured.models)          # Just the Pydantic models
print(structured.clean_methods)   # Just the clean method signatures
print(structured.exports)         # List of exported names

# Use any mode as needed
exec(simple_code, globals())
result = await get_weather(location="London", unit="F")

Schema-Only Code Generation

Generate code without needing actual function implementations:

from schemez import create_schema
from schemez.code_generation import ToolsetCodeGenerator

# Create schemas from function signatures only
schema1 = create_schema(get_weather)
schema2 = create_schema(search_users)

# Generate client code from schemas
generator = ToolsetCodeGenerator.from_schemas([schema1, schema2])
client_code = generator.generate_code(mode="models")

# Works for client generation, signatures, models
# Routes require actual callables for execution

Tool Documentation

Generate comprehensive documentation for your tools:

# Generate tool descriptions with signatures and docstrings
documentation = generator.generate_tool_description()

# Generate different formats for different needs
stubs = generator.generate_code(mode="stubs")        # Clean stubs for LLMs
simple = generator.generate_code(mode="simple")      # Natural signatures
models = generator.generate_code(mode="models")      # Rich validation

# Includes:
# - Function signatures with type hints  
# - Docstrings and parameter descriptions
# - Usage examples and constraints
# - Available return type models

Code Generation Modes

Schemez offers three distinct generation modes to suit different use cases:

Models Mode (mode="models")

Best for: Production APIs, complex validation, detailed type safety

client_code = generator.generate_code(mode="models")

Generated code includes:

  • Full Pydantic input models with validation constraints
  • Rich type information (min/max values, string patterns, etc.)
  • HTTP client functions that accept model instances
  • Comprehensive error handling and type checking

Example generated interface:

class SearchUsersInput(BaseModel):
    query: str = Field(min_length=1, description="Search query")
    limit: int = Field(ge=1, le=100, default=10)
    
async def search_users(input: SearchUsersInput) -> str:
    # HTTP client implementation

Simple Mode (mode="simple")

Best for: LLM integration, natural code execution, clean interfaces

client_code = generator.generate_code(mode="simple")

Generated code features:

  • Clean, natural function signatures
  • Direct parameter passing (no model wrappers)
  • Minimal boilerplate for easy LLM consumption
  • Intuitive function calls

Example generated interface:

async def search_users(*, query: str, limit: int = 10, status: str = "active") -> str:
    # HTTP client implementation with automatic parameter handling

Stubs Mode (mode="stubs")

Best for: Documentation, LLM prompts, API exploration

stubs_code = generator.generate_code(mode="stubs")

Generated code provides:

  • Function signatures with type hints
  • Complete docstrings and parameter descriptions
  • Input models for reference
  • No implementation details (just ... bodies)

Example generated interface:

class SearchUsersInput(BaseModel):
    query: str
    limit: int = 10
    
async def search_users(input: SearchUsersInput) -> list[dict]:
    """Search for users with filters.
    
    Args:
        input: Function parameters
        
    Returns:
        List of user dictionaries
    """
    ...

Advanced Features

Type Support

Schemez handles complex Python types:

from typing import Literal, Optional, Union
from enum import Enum
from dataclasses import dataclass

class Status(Enum):
    ACTIVE = "active"
    INACTIVE = "inactive"

@dataclass
class User:
    name: str
    email: str

def complex_function(
    users: list[User],                    # -> Nested object arrays
    status: Status,                       # -> Enum values
    mode: Literal["fast", "detailed"],    # -> String literals
    metadata: dict[str, Any],             # -> Objects with any properties
    optional: Optional[str] = None,       # -> Optional parameters
) -> Union[dict, list]:                   # -> Union return types
    """Handle complex types."""
    pass

schema = create_schema(complex_function)

Configuration

Fine-tune schema generation:

# Exclude specific parameter types (e.g., context objects)
schema = create_schema(my_function, exclude_types=[Context, Session])

# Override names and descriptions
schema = create_schema(
    my_function,
    name_override="custom_name",
    description_override="Custom description"
)

Error Handling

Robust error handling throughout:

from schemez.code_generation import ToolCodeGenerator

# Schema-only generator (no execution capability)
generator = ToolCodeGenerator.from_schema(schema)

try:
    # This will fail with clear error message
    generator.add_route_to_app(app)
except ValueError as e:
    print(e)  # "Callable required for route generation for tool 'my_function'"

Use Cases

  • AI Tool Integration: Convert functions to OpenAI-compatible tools
  • API Client Generation: Create type-safe HTTP clients from schemas
  • FastAPI Automation: Auto-generate routes with validation
  • Documentation: Generate comprehensive API docs
  • Testing: Create mock implementations and test data
  • Code Analysis: Extract and analyze function signatures
  • Dynamic Execution: Build sandboxed Python environments

Differences from Pydantic

While Pydantic focuses on detailed type preservation, schemez optimizes for practical AI interaction:

  • Simplified unions: Takes first type instead of complex anyOf schemas
  • Enum flattening: Extracts enum values as simple string arrays
  • AI-optimized: Generates schemas that work well with LLM function calling
  • Code generation focus: Built for generating executable code, not just validation

Contributing

Contributions welcome! This library consolidates schema and type utilities from multiple projects into a unified toolkit.

About

Base pydantic tools

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%