Skip to content

LeviWeiZhi/ICPG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image-Centered Pseudo Label Generation for Weakly Supervised Text-Based Person Re-Identification(Accepted By PRCV2024)

Authors: Weizhi Nie, Chengji Wang(*), Hao Sun, and Wei Xie

Highlights

The goal of this work is to improve the performance of global text to image person retrieval under weakly supervised settings. To achieve this, we utilize the complete CLIP model as our feature extraction backbone. In addition, we propose an Image-Centered Pseudo Label Generation method to address the issues of uncertain cross-modal pseudo identity labels.

Usage

Prepare Datasets

Download the CUHK-PEDES dataset from here, ICFG-PEDES dataset from here and RSTPReid dataset form here

Organize them in your dataset root dir folder as follows:

|-- your dataset root dir/
|   |-- <CUHK-PEDES>/
|       |-- imgs
|            |-- cam_a
|            |-- cam_b
|            |-- ...
|       |-- reid_raw.json
|
|   |-- <ICFG-PEDES>/
|       |-- imgs
|            |-- test
|            |-- train 
|       |-- ICFG_PEDES.json
|
|   |-- <RSTPReid>/
|       |-- imgs
|       |-- data_captions.json

Training

python train.py \
--name icpg \
--img_aug \
--batch_size 64 \
--MLM \
--loss_names 'chm+cdm+itc' \
--dataset_name 'CUHK-PEDES' \
--num_epoch 60

Testing

python test.py --config_file 'path/to/model_dir/configs.yaml'

About

Image-Centered Pseudo Label Generation for Weakly Supervised Text-based Person Re-Identification, PRCV 2024

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published