Lists (21)
Sort Name ascending (A-Z)
Starred repositories
Implement a ChatGPT-like LLM in PyTorch from scratch, step by step
The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.
Google Research
Learn OpenCV : C++ and Python Examples
A guidance language for controlling large language models.
本项目将《动手学深度学习》(Dive into Deep Learning)原书中的MXNet实现改为PyTorch实现。
Instruct-tune LLaMA on consumer hardware
FinGPT: Open-Source Financial Large Language Models! Revolutionize 🔥 We release the trained model on HuggingFace.
Get started with building Fullstack Agents using Gemini 2.5 and LangGraph
A collection of various deep learning architectures, models, and tips
《李宏毅深度学习教程》(李宏毅老师推荐👍,苹果书🍎),PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases
AISystem 主要是指AI系统,包括AI芯片、AI编译器、AI推理和训练框架等AI全栈底层技术
StableLM: Stability AI Language Models
Natural Language Processing Tutorial for Deep Learning Researchers
PyTorch code and models for the DINOv2 self-supervised learning method.
LangGPT: Empowering everyone to become a prompt expert! 🚀 📌 结构化提示词(Structured Prompt)提出者 📌 元提示词(Meta-Prompt)发起者 📌 最流行的提示词落地范式 | Language of GPT The pioneering framework for structured & meta-prompt…
《动手学大模型Dive into LLMs》系列编程实践教程
QLoRA: Efficient Finetuning of Quantized LLMs
Best Practices, code samples, and documentation for Computer Vision.
Automatic extraction of relevant features from time series:
Overview and tutorial of the LangChain Library
Evidently is an open-source ML and LLM observability framework. Evaluate, test, and monitor any AI-powered system or data pipeline. From tabular data to Gen AI. 100+ metrics.
搜集、整理、发布 中文 自然语言处理 语料/数据集,与 有志之士 共同 促进 中文 自然语言处理 的 发展。
Pytorch🍊🍉 is delicious, just eat it! 😋😋
Chinese version of CLIP which achieves Chinese cross-modal retrieval and representation generation.
每个人都能看懂的大模型知识分享,LLMs春/秋招大模型面试前必看,让你和面试官侃侃而谈
FinRobot: An Open-Source AI Agent Platform for Financial Analysis using LLMs 🚀 🚀 🚀