Skip to content

A simple repo made for me to practice basic to intermediate skills I'll need as an AI Engineer at Seam AI. Covers everything from basic type hinting to LangGraph, to O*NET and more

Notifications You must be signed in to change notification settings

RaghavGaurML/seam-ai-prep

Repository files navigation

📘 Seam AI Prep

Python FastAPI Pydantic License

A focused 13-day study plan to strengthen modern AI engineering skills — from solid Python foundations to async FastAPI, LangGraph, and LLM integration.


🧭 Overview

Goal: Build end-to-end fluency as an AI Engineer — from typing and repo structure to async orchestration, Pydantic, FastAPI, and LangGraph agents.
Format:
Core (3 hrs) = must-do tasks
Stretch (+1 hr) = optional if energy allows


⚙️ Recommended Setup (PowerShell)

Run your setup script to create the virtual environment and install dependencies:

# Run the setup script
.\setup.ps1

📅 13-Day Seam AI Prep Plan

Week 1 → Developer Foundations + Async / FastAPI

Day Focus Core (3 hrs) Stretch (+1 hr)
Day 1 Python Typing & Codebase Reading • Write small scripts w/ typing, run mypy (1h)
• Build class-based app w/ type hints (1h)
• Explore Typer repo → trace CLI entrypoint (1h)
Refactor to stricter typing
Day 2 Shell, venv, Codebase Structure • Automate setup script (venv, deps, tests) (1h)
• Add requirements.txt + pyproject.toml (1h)
• Explore cookiecutter templates (1h)
Add a Makefile
Day 3 Git Workflows • Branch → PR → merge workflow (1h)
• Practice rebasing & resolving conflicts (1h)
• Explore GitPython (1h)
Use git bisect on a bug
Day 4 VSCode & Debugging • Set up black, ruff, flake8, mypy (1h)
• Debug project w/ breakpoints (1h)
• Explore black repo (1h)
Generate docs w/ pdoc
Day 5 Pydantic Models • Define models (User, Job, Resume) (1h)
• Validate & test invalid data (1h)
• Explore Pydantic tests (1h)
Nested models + export schema
Day 6 FastAPI Basics • Build /hello + /predict endpoints (1h)
• Add Pydantic models + tests (1h)
• Explore fastapi-realworld-example-app (1h)
Add logging middleware
Day 7 Async FastAPI • Convert endpoints to async (1h)
• Simulate async DB/API calls (1h)
• Explore httpx async requests (1h)
Integration tests for concurrency

Week 2 → LangGraph, LLM Handling, Ontologies

Day Focus Core (3 hrs) Stretch (+1 hr)
Day 8 LangGraph Basics • Build simple agent (calculator + reformatter) (1h)
• Add branching logic w/ state (1h)
• Explore LangGraph examples (1h)
Error-handling node
Day 9 Async LangGraph + FastAPI • Add async tool calls in LangGraph (1h)
• Wrap in FastAPI /chat (1h)
• Explore Starlette (1h)
Streaming response w/ async yield
Day 10 LLM Usage Mindset • Experiment w/ OpenAI API: temp, few-shot vs zero-shot (1h)
• Build a prompt evaluator script (1h)
• Explore OpenAI Cookbook (1h)
Compare GPT outputs vs sentence-transformers similarity
Day 11 Feedback Loops • Log model outputs as JSON (1h)
• Build CLI upvote/downvote (1h)
• Explore spaCy Streamlit (1h)
Store feedback in SQLite & query it
Day 12 Fine-tuning Encoders • Fine-tune Sentence-Transformer on toy dataset (1h)
• Write typed training loop (1h)
• Explore Sentence-Transformers examples (1h)
Try LoRA on a small model
Day 13 Ontology & Embeddings • Load ESCO / O*NET sample into SQLite (1h)
• Embed jobs & run similarity search (1h)
• Explore Haystack (1h)
Add FastAPI /job-match endpoint

Additional Study Tools

Git Branching: https://learngitbranching.js.org

Security + Linux Commands: https://overthewire.org/wargames/

LangGraph: https://academy.langchain.com/, https://www.youtube.com/watch?v=jGg_1h0qzaM&t=524s


🧩 Folder Structure (Tentative - Currently on Day 9)

seam-ai-prep/
│
├── week1_foundations/
│   ├── day1_typing/
│   ├── day2_shell_venv_codebase/
│   ├── day3_gitworkflows/
│   └── ...
│
├── week2_langgraph_llm/
│   ├── day8_langgraph_basics/
│   ├── day9_async_integration/
│   └── ...
│
├── requirements.txt
├── pyproject.toml
├── setup.ps1
└── README.md

About

A simple repo made for me to practice basic to intermediate skills I'll need as an AI Engineer at Seam AI. Covers everything from basic type hinting to LangGraph, to O*NET and more

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •