Skip to content
/ cvzone Public
forked from cvzone/cvzone

This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

License

Notifications You must be signed in to change notification settings

RadwaSK/cvzone

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CVZone

This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

Installation

You can simply use pip to install the latest version of cvzone.

pip install cvzone


60 FPS Face Detection


from cvzone.FaceDetectionModule import FaceDetector
import cv2

cap = cv2.VideoCapture(0)
detector = FaceDetector()

while True:
    success, img = cap.read()
    img, bboxs = detector.findFaces(img)

    if bboxs:
        # bboxInfo - "id","bbox","score","center"
        center = bboxs[0]["center"]
        cv2.circle(img, center, 5, (255, 0, 255), cv2.FILLED)

    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()


Hand Tracking


Basic Code Example

from cvzone.HandTrackingModule import HandDetector
import cv2

cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)
detector = HandDetector(detectionCon=0.5, maxHands=1)

while True:
    # Get image frame
    success, img = cap.read()

    # Find the hand and its landmarks
    img = detector.findHands(img)
    lmList, bboxInfo = detector.findPosition(img)
    if lmList:
        bbox = bboxInfo['bbox']
    # Display
    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

Finding How many finger are up

if lmList:
        bbox = bboxInfo['bbox']
        
        # Find how many fingers are up
        fingers = detector.fingersUp()
        totalFingers = fingers.count(1)
        cv2.putText(img, f'Fingers:{totalFingers}', (bbox[0] + 200, bbox[1] - 30),
                    cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 2)

Finding distance between two fingers

                 
if lmList:
        bbox = bboxInfo['bbox']

        # Find Distance Between Two Fingers
        distance, img, info = detector.findDistance(8, 12, img)
        cv2.putText(img, f'Dist:{int(distance)}', (bbox[0] + 400, bbox[1] - 30),
                    cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 2)

Find Hand Type - i.e. Left or Right

if lmList:
        bbox = bboxInfo['bbox']

        # Find Hand Type
        myHandType = detector.handType()
        cv2.putText(img, f'Hand:{myHandType}', (bbox[0], bbox[1] - 30),
                    cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 2)


Pose Estimation


from cvzone.PoseModule import PoseDetector
import cv2

cap = cv2.VideoCapture(0)
detector = PoseDetector(upBody=True)
while True:
    success, img = cap.read()
    img = detector.findPose(img)
    lmList, bboxInfo = detector.findPosition(img, bboxWithHands=False)
    if bboxInfo:
        center = bboxInfo["center"]
        cv2.circle(img, center, 5, (255, 0, 255), cv2.FILLED)

    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()


Face Mesh Detection


from cvzone.FaceMeshModule import FaceMeshDetector
import cv2

cap = cv2.VideoCapture(0)
detector = FaceMeshDetector(maxFaces=2)
while True:
    success, img = cap.read()
    img, faces = detector.findFaceMesh(img)
    if faces:
        print(faces[0])
    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

Stack Images


import cvzone
import cv2

cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)

while True:
    success, img = cap.read()
    imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    imgList = [img, img, imgGray, img, imgGray, img,imgGray, img, img]
    stackedImg = cvzone.stackImages(imgList, 3, 0.4)

    cv2.imshow("stackedImg", stackedImg)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()


Corner Rectangle



import cvzone
from cvzone.HandTrackingModule import HandDetector
import cv2

cap = cv2.VideoCapture(0)
detector = HandDetector()

while True:
    # Get image frame
    success, img = cap.read()

    # Find the hand and its landmarks
    img = detector.findHands(img, draw=False)
    lmList, bbox = detector.findPosition(img, draw=False)
    if bbox:
        # Draw  Corner Rectangle
        cvzone.cornerRect(img, bbox)

    # Display
    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

FPS


import cvzone
import cv2

fpsReader = cvzone.FPS()
cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)

while True:
    success, img = cap.read()
    fps, img = fpsReader.update(img,pos=(50,80),color=(0,255,0),scale=5,thickness=5)
    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

About

This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%